
ht. J. Heat Mass Tnwfer. Vol. 16, pp. 17034727. Pergamon Press 1973. Printed in Great Britain 

HEAT TRANSFER FROM A VIBRATING 
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Ah&act-Theoretical results are obtained for heat transfer from a circular cylinder oscillating in au 
unbounded viscous fluid which is otherwise at rest. The amplitude of the oscillation is assumed small 
compared to the radius of the cylinder, which for most of the examples considered is assumed to be at a 
constant temperature. The analysis is based upon use of the acoustic streaming flow field and consideration 
is given to the cases of small and large streaming Reynolds numbers. For large streaming Reynolds 
numbers, a solution for the previously ~det~n~ steady streaming flow field is computed. The results 
obtained cover a wide range of Prandti number. The method of matched asymptotic expansions is exploited 
in the analysis and the computed results are also supplemented by an approximate method based on an 
integrated form of the governing equations. The relationship between the present work and other relevant 
contributions in the literature is discussed. In a final section, attention is devoted .to a technique for 
draining the temperature ~s~ibution which results when a line source of heat is embedded at the 

centre of the oscillating cylinder. 
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NOMENCLATURE 

radius of the cylinder ; 
conductivities ofthe cylinder 
and fluid respectively; 
typical velocity; 
total flux of heat per unit 
length from the cylinder de- 
fined in equation (35); 
Pr~dtlnum~r; = Y/U; 
represents the ratio of a to a 
viscous length; = (wa2/v)*; 
streaming Reynolds num- 
ber; = e2M2 = U~/~V; 

Nusselt number, 

= Q/M~m - Fm,; 
cylindrical polar co-ordin- 
ates as shown in Fig. (I); 
radial and azimuthal veloci- 
ties ; 
steady tangential and nor- 
mal velocity com~nents de- 
fined in equation (57); 

* Present address : Central Electricity Research Lab- 
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V 
CO’ steady radial velocity at 

infinity; 
x scaled distance co-ordinate 

defined in equation (27); 
% similarity variable defined 

in equation (50); 
z 
T, Fm, If,, 

fluid temperature; 
wall, ambient fluid and iso- 
thermal core temperatures 
respectively; 

‘I: q, 7, t, f, 2,8, dimensionless temperatures; 

GM), dimensionless temperature 
on cylinder surface; 

x,, x,, functions defined in (74); 
D, function occurring in equa- 

tion (84); 

b(#b f(#)t defined in (39); 
F(x)> function associated with the 

dimensionless flux of heat 
across a station 0 = con- 
stant in the thermal bound- 
ary layer; 

QW function occurring in equa- 
tion (80); 

1703 



B. J. DAVIDSON 

function defined in equation 
(51); 
function associated with the 
finite difference form of the 
continuity equation, see (62); 
functions occurring in equa- 
tion (72); 
coefficients occurring in 
equation (99). 

kinematic viscosity of the 
fluid; 
coefficient of viscosity of the 
fluid: 
thermal diffusivity of the 
fluid: 
typical time; 
dimensionless stream func- 
tions; 
Stokes layer variables de- 
fined in equation (6); 
space variables, 8 defined in 
Fig. 1, (b = 0 - ~12, 

C = cfti2; 
boundary layer distance 
co-ordinates: 
mesh lengths shown in Fig. 
2; 
distance co-ordinate at the 
outer edge of a boundary 
layer; 
perturbation parameter; 

= U,/oa; 
perturbation parameter; 

= (2Pr)-+: 
pe~urbation parameter: 

= (Pr lb)-+; 
displacement thickness de- 
fined in equation (65); 
shear stress delined in equa- 
tion (66): 
functions defined in equa- 
tion (46) and (28); 
constant defined in (39); 

6’. 
@, 

some prescribed tolerance: 
function defined in equation 
(98). 

1. INTRODUCTION 

THE PURPOSE of this paper is to examine the 
problem of transport of heat associated with 
acoustic streaming, induced by an oscillating 
circular cylinder, in a systematic manner and 
evaluate the status of existing theories. Attention 
has already been focused upon this particular 
problem, notably in the theoretical investiga- 
tion and discussion on relevant experimental 
contributions publish~ by Richardson Cl]. 
However, not all of the results obtained by 
Richardson are correct. It is believed that the 
analysis described here leads to a more satis- 
factory understanding of the role played by the 
steady streaming velocity field in heat transfer 
from an oscillating cylinder, in a fluid which is 
otherwise at rest. 

We choose a frame of reference in which the 
cylinder of radius a is at rest and the fluid at 
infinity is assumed to undergo transverse vibra- 
tions. The fluid is assumed incompressible and 
the flow laminar. The wall and ambient fluid 
are maintained at different constant tempera- 
tures in most of the cases considered here, and 
we restrict ourselves to small temperature differ- 
ences. By suitable choice of the fluid in which the 
cylinder is immersed, and of the frequency of 
oscihation, it is possible to obtain acoustic 
wavelengths which are large or small compared 
with the cylinder radius. Attention here is con- 
fined to situations where the wavelength is large 
compared with the radius. 

When a cylinder of radius a in a fluid of 
kinematic viscosity v and thermal diffusivity tc 
undergoes transverse vibrations with speed 
Urn cos wr four length scales are important. 
These are the geometrical length a, the vibration 
amplitude V,/o, the viscous length (v/o)” and 
the analogous length (K/O)*. From these length 
scales we can construct three independent 
parameters E, M and Pr (see [2]), which charac- 
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terize the motion and heat-transfer properties. 
Thus E = U,/uu is the ratio of the vibration 
amplitude to the radius a, M = (wa”/v)* repre- 
sents the ratio of a to the viscous length and 
Pr = V/X is a measure of the ratio of the viscous 
and thermal diffusive lengths. We only concern 
ourselves with situations where E 4 1. It is well 
established that if&M 9 1 then the first order 
harmonically fluctuating vorticity created at the 
surface of the body, which is naturally present 
due to the assumed oscillatory behaviour, is 
contined to a thin boundary layer, or Stokes 
layer as it is known, of thickness O(v/o)*. 
Outside this layer a second order steady stream- 
ing, with characteristic velocity O(EUJ, per- 
sisEs. A Reynolds number associated with this 
streaming is defined as (see [3]) Rs = t2M2 
= b’“,/ov. The parameter Rs plays a role ana- 
logous to that of the conventional Reynolds 
number for steady flow past a solid body. It has 
been made clear by the work in reference [2] 
that Rs is a more fundamental parameter in 
these situations than M, and we adopt it as such. 
With Rs 9 1, the outer region, away from the 
Stokes layer, in which the steady velocity is 
adjusted to zero, is of boundary-layer character 
with thickness Q(Rs%) and for Rs 4 I the 
flow is Stokes-like and the adjustment takes 
place over a much wider region. We mention 
finally the dimensionless parameter k,/k,, where 
k,, k, are the thermal conductivities of the 
cylinder and fluid respectively, which appears 
in the final section in association with a problem 
of internal heat generation. These are all the 
dimensionless parameters on which the subse- 
quent theory is based. 

All results which are obtained here are for 
E G 1 and we suppose they are asymptotically 
valid in the limit E + 0. We formulate a theory 
for Rs, Pr = O(1) by which we mean ~~~ Pr, 
Rs = O(1). In the subsequent development of 
the theory these latter parameters may take 
large or small values which correspond to fur- 
ther limit processes in the following sense. 
If E‘~ and l 2 are any two dimensionless para- 
meters then, for example, the double-limit pro- 

cessEi -+ 0, with lim l 2 = O(l), followed by 
Q-+0 

c2 + co (we assume these limits apply to situa- 
tions in which e1 4 1, e2 % 1) has the property 
that lim E& = 0 for any a > 0 (this we assume 

l ,-rO 

applies to situations in which eiei 4 1). In our 
development of the theory, all the analysis for 
extreme values of the various parameters is to be 
interpreted in this context of ordered limit pro- 
cesses. 

In Section 2 we formulate the general problem 
for Rs = O(l), Pr = O(1) and seek a solution of 
the energy equation, following a procedure used 
to obtain the flow field given in [2] with E as a 
perturbation parameter, in the form of two com- 
plementary series. One series is associated with 
the outer region, valid at a distance O(1) from 
the cylinder, the other with the Stokes layer. 
These series must match at each stage of the 
expansion. Pertinent results associated with the 
flow field are summarized, for convenience, 
from [a]. Following the general formulation 
from which equations for the steady velocity 
and temperature distribution in the outer region 
are given, we examine limiting forms of the solu- 
tions of these equations for Rs < 1, Rs $ I 
since closed form solutions for Rs = O(1) are 
not available, and the full scale numerical calcu- 
lation in this situation is beyond the limitations 
‘of the available computing facility. For Rs e 1, 
we examine in Section 3 the cases Pr = O(l), 
for which we show that no steady solution can 
exist in our unbounded region, and PrRs = O( 1) 
with particular reference to the case PrRs % 1. 
A feature which emerges from the analysis in 
Sections 2 and 3 is that for Pr = O(l), or within 
the above framework lim Pr = O(l), the Stokes 

S-+0 

layer is so thin that it acts as a pure conduction 
region. The detailed flow structure of the Stokes 
layer plays no part in the convective heat trans- 
fer. 

We show in Section 4 that for Prandtl num- 
bers which are so large that Pr = 0(cm2) the 
thermal boundary layer is sufficiently thin for 
convection within the Stokes layer to be im- 
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portant. Accordingly we formulate a theory for 
which lim Pr 8 = O(l), lim Rs = 0( 1). However, 

E-0 E-+0 

we have been unable to draw firm conclusions 
about the heat-transfer characteristics in this 
case, where the fluid flow responsible for con- 
vection is a recirculating flow with closed 
streamlines. 

In Section 5, the other limiting case of 
interest, Rs 9 1, Pr = O(l) is discussed. An 
accurate numerical method of solving the 
momentum and energy equations employing 
finite difference techniques, is described. This 
method is supplemented by an approximate 
momentum integral method which yields fairly 
accurate results very quickly. The details of this 
latter method are to be found in an Appendix 
to this paper. In addition to the numerical 
calculations, asymptotic solutions of the energy 
equation are found in the cases Pr %= 1, Pr 4 1. 

The rate of heat transfer from the cylinder 
expressed in the form ofa dimensionless quantity, 
the Nusselt number Nu, is determined in all 
cases and a critical comparison is made between 
the results obtained here and those derived by 
Richardson [ 13. 

In the final section we employ the results 
derived in Section 5, for the steady streaming 
when Rs B 1, to study a particular problem in 
which the wall is no longer maintained at 
constant temperature. In this problem the heat- 
ing is initiated by a line source of heat at the 
centre of the cylinder. We select this model 
situation as an idealization for those problems 
in which there is internal heat generation within 
the cylinder. An internal heat conduction prob- 
lem must then be solved simultaneously with 
the external convective heat transfer problem. 
An iterative scheme is devised for this mixed 
problem which is capable of handling situations 
for values of the parameter k,R;*/k, = O( 1). 
This parameter arises in the condition of 
continuity of heat flux across the cylinder 
surface and will be small compared to unity 
within the structure of our limit processes. 
Results showing the heat-transfer characteristics 

and the isotherms within the cylinder are pre- 
sented graphically. 

2. THE GOVRRN~G EQUATIONS 

For a circular cylinder which performs trans- 
verse vibrations with speed Urn cos ot in a 
fluid which is otherwise at rest, we choose 
cylindrical polar co-ordinates fixed in the 
cylinder, such that the radial distance is measured 
from the centre of the cylinder and 8 = 0 
coincides with the axis of oscillation as in Fig. 1. 

* c 
u, co5 wt 

FE. 1. The co-ordinate system. 

We make all the governing equations dimen- 
sionless by using Uo3 as a typical velocity, w- ’ 
as a typical time and a, the radius of the cylinder, 
as a typical length. Thus the dimensionless 
stream function Ji, from which the radial and 
azimuthal velocity components are given by 

1 a* a* 
V, = - ;z. o* = -. &’ (1) 

satisfies the equation, 

The boundary conditions for (2) are 

$=!$=Oonr=l, 
1 

I/I N rsin8e”asr-+ co, 1 
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and the real part of any complex quantity is to 
be understood. In these equations, E = Um/oa, 
Rs = U~/CDV, T is the dimensionless time and the 
operator V’ is given by 

We shall be concerned entirely with the small 
amplitude oscillations for which E << 1. The 
most comprehensive description of the flow 
field, which owes its origins to the work of 
Stuart [3] and ~onguet-Hi~~ns [4] is to be 
found in [2]. There, with E as a perturbation 
parameter, a solution is developed for Rs = O(l), 
by which we mean hm Rs = O(1). The motiva- 

tion for this is that Rs is a Reynolds number 
based on the induced steady streaming, see [3]. 
It is well known that a solution of (2) is not 
uniformly valid, aud in [2] two implemental 
series solutions are presented, an outer solution 
valid at a distance O(1) from the cylinder, and 
an inner solution valid in a Stokes shear-wave 
layer of thickness O(E/&-*). The series solutions 
“match” at each stage in the manner of Van 
Dyke, [S]. For the details of the derivation of 
these solutions reference may be made to [2]; 
here we present the principal results. Retaining 
the notation of [2], the outer and inner solutions 

A characteristic feature of these flows is the 
induced steady streaming O(E), and in (4) and (5) 
the time-independent part of O(E) has been 
explicitly displayed with superscript (s). For a 
circular cylinder, the terms displayed in (4) and 
(5) take the form, 

tioo = sin 0 r - 5 e’“, 
( > 

$0x = - J2(1 - i)$.! e”, 

#1”:, = 0 t 

Y 00 
= 2sin 6 {q - $1 - i)(l - e-('fiJq)} e", 

(7 

YJ 01 = 2J2 sin B ($1 - i) [q - $ (1 - i) 

(1 - e-(1+%)] _ i;llz - $1 _ i)tfe-(l+i)” 

_ $(l _ e-(1 +Oq)} eit, 

Y:“:, = 2sin28 
i 

1 
-(l + i)e -(l+i)qJ2 

+~tle-tZ+Orl f1 + 0 e2iz, 

442 I 

p ,,=:2~in2e(~-~~~_e-~1_~ 

e-“cosq - e-“sinq -$e-“sinq), 

The equation, derived in [Z], for t,$, is 

1 d(ip V21p’) ~V4~~~ -; 10’ 

a e) 
10 =:o 

’ (8) 

together with the boundary conditions, 
(4) 

@& = o(r) as r--t cc, 

*:“; = 0 

a+% _ 
onr = 1. (9) 

(5) ar 
- 2 sin 28 

where the Stokes layer variables for the inner We see from (8) that the steady streaming outside 

solutions are defined as the Stokes layer, represented by I,+$,, is governed 
by the full equations for steady viscous flow at 

~ Rs+ 
= EJ2 9% 

Reynolds number Rs. We note from (9) that the 

R""(r - 1). 
tf =eJz (6) 

outer streaming is induced indirectly by the 
streaming in the Stokes layer, which is itself 
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a consequence of the action of Reynolds stresses. 
It is shown in [2] that these stresses make no 
direct contribution to the outer streaming. 
We now investigate the r61e played by this 
steady streaming velocity as a mechanism for 
convecting heat from the circular cylinder. 

With the streaming Reynolds number Rs 
= O(1) and the Prandtl number Pr = O( 1) 
where Pr = V/K, the energy equation may be 
written in dimensionless form, with dissipative 
effects ignored, as 

aT l d(rl/, T) _ 6’ V2T 

a + r qr, e) 
(10) 

5 PrRs ’ 

together with the boundary conditions, 

T=lonr=l, 
(11) 

T=Oasr-+a. 

The bouqdary conditions on the dimensionless 
temperature Tdefined as 

(12) 

where 7 is the temperature, are based on the 
assumption that the wall and ambient fluid are 
maintained at constant temperatures T,, and TT, 
respectively. We discuss in a later section a 
particular situation in which TD is not uniform. 
We restrict ourselves entirely to situations in 
which the fractional temperature difference 
/ To - Trn I/?= is small compared with unity 
so that the dependence of the density and 
diffusivities upon temperature may be ignored, 
and the Grashof number is so small that natural 
convection effects may also be neglected. 

As indicated earlier, we are concerned solely 
with small amplitude oscillations. By analogy 
with (4), we seek a perturbation solution of the 
energy equation (10) in the form 

T = To + cTl + c2T2 -t 0(e3), (13) 

where q = q(r, 8, Rs, Pr, 2). Substituting (4) and 
(13) into equation (10) and successively equating 
coefficients of powers of E we find that 

(14) 

n, 1 Wool To, _ o 

X + F d(r, 0) - ’ 
(15) 

iiT 
++- 

1 W,,, T,) + 1 W,,. To) 
m r LYr. 0) Rsfr d(r, 8) 

+ 1 W$ To) 1 
r a(r, 0) = - PrRs 

V2T 

0’ (16) 

From (14) we deduce that To has no time-de- 
pendent part, which we may intuitively expect 
from the assumed time-independent boundary 
conditions. From (7) we see that II/,, and $,,l 
vary harmonically with z, and since To is 
independent of time we integrate (15) once to 
give the form of Tl as 

Tl = $l(r,O,Rs,Pr)+ 4Jr,e,Rs,Pr)sinz. (17) 

Using this result, we equate separately the time 
dependent and time independent parts of equa- 
tion (16) to yield as the equation for Tg’. 

1 a($!$ TfS’ Cl) _ 
r d(r,‘@ 

= ks V2T(OSJ. (18) 

Thus the equation for T’$ is only recovered when 
considering the 0(e2) equation for T2. This 
method of proceeding is typical for these 
oscillatory flow situations, as for example in 
[2] and [6]. We observe from equation (18) 
that the steady streaming velocity, governed by 
equation (8) plays a dominant riile in determin- 
ing the mean first order heat transfer. However, 
as we have already noted, equation (18) is only 
applicable in an outer region outside the Stokes 
layer. Identifying temperatures in the Stokes 
layer region by Y(q, 8, Rs, Pr,c, t) = T(r, 6, Rs, 
Pr,c, z) and expanding Y in an analogous 
manner to (13), it is easily shown that Yr’ = 0 
and that the governing equation for S’$ is 
simply 

(32yw 

0 =o 

-@- . 
(19) 
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The appropriate boundary condition is, from 
(1 I), Sg) = 1 on q = 0, and we require that the 
solution of (19) matches with the outer solution 
of (18). The solution of (19) correct to O(E) is 
simply zF~’ = 1, and we note that, to first order, 
the Stokes layer acts as a purely conductive 
region. This result is not entirely unexpected 
since, for Pr = O(l), the thermal boundary 
layer is very thick compared to the Stokes layer. 
Under these circumstances we may expect the 
temperature changes across the latter to be. 
negligible. Of course, as the Prandtl number 
increases the thermal boundary layer thickness 
decreases and in a later section we show that for 
Prandtl numbers for which e2Pr = O(l), con- 
vective effects within the Stokes layer do become 
important. 

Since, for Rs = O(l), we are unable to solve 
equations (8) and (18) in closed form, we con- 
sider limiting forms of the solutions of (8) and 
(18) when Rs G 1 and Rs >> 1. 

3. SOLUTIONS FOR Rs 4 1 

We see from (8) that Rs 4 1 is both a necessary 
and sufficient condition for the outer steady 
flow to be Stokes-like; the governing equation 
for I,&($ for this case is the biharmonic equation, 

v”+:“b = 0, (20) 

the solution of which must satisfy the boundary 
conditions (9). We note from the boundary 
conditions (9) that the outer steady flow has 
stagnation points of attachment at 8 = + 7r/2. 
For a direct comparison of the results obtained 
here with those of other authors, see for example 
[ 11, we choose as origin the stagnation point 
8 = n/2, and write 4 = fI - n/2. The solution of 
(20) which satisfies the boundary conditions (9) 
is, 

*‘“’ = 
10 - z{r-’ - l)sin2& (21) 

We note that (21) represents a uniformly valid 
solution of (20) together with (9). 

We now seek solutions of the steady tempera- 
ture equation (18) when Rs +S 1. 

CQse(i):Rs -3 1,Pr = O(1) 
With Rs Q 1 and Pr = O(1) we see from the 

steady temperature equation (18) that diffusive 
effects, as well as being the dominant mode of 
transport in the Stokes layer, are of primary 
importance in the outer region. As a first 
approximation to 7’$’ we have to solve 

v2 T’S’ = 0 0 ’ (22) 

T($=lonr=l; 1 

T(‘)=Oasr-+co.1 (23) 
0 

The condition at infinity follows immediately 
from (11) and that at r = 1 is the matching 
condition with the inner conduction solution 
of (19). There are no solutions of (22) which 
satisfy both of the conditions (23). Consequently 
we relax the condition at infinity on the assump- 
tion that the necessary adjustment can take place 
in an outer region, in which there is a balance 
between convective and diffusive processes. This 
procedure is typical for steady low Reynolds 
number flow past a finite body. The solution of 
(22) which satisfies the boundary condition at 
r = 1 is Tg’ = 1 + B log,r, where B is a con- 
stant to be determined by matching with the 
solution appropriate to the outer region. We 
assume that variables appropriate to this outer 
region are, by analogy with the classical Stokes- 
O&en flow, of the form 

p = (PrR$r, n > 0, t(p, 4, z) = T(r, 8, z), (24) 

where, by virtue of (21) I/&$, remains O(1). 
Using the result (21), we express equation (18) 
in terms of the outer “O&en-like” variables (24) 
to give as the governing equation for t!), 

(PrfZS)2n + ’ $ sin 24 f.$ + .+ ~0s 24, f$! 1 
at(s) - (PrRs) -? cos 2$9 = Vp2t$), 

2P ap 
(25) 

where 
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We see from (25) that for no positive value of n 
can we achieve the necessary balance between 
the convective and conductive terms. We there- 
fore conclude that no steady solutions for an 
unbounded medium exist for Pr = O(1) and 
Rs 6 1. Physically, the convection velocities 
in the proposed outer region are too weak to 
ever dominate diffusion. Only for the larger 
Prandtl numbers such that PrRs = O(1) do we 
see that diffusive effects will become relatively 
less important, so that convective effects are not 
dominated by them everywhere. As a special 
case we now formulate a theory for situations 
where PrRs B 1, in which we show that con- 
vection, which is primarily due to the “slip- 
velocity” defined in (9), plays an active role. 

Case (ii): Rs << 1, PrRs B 1 
We see from (18) that as a first approximation 

to Tt’ we may neglect the right hand side, and 
for the resulting equation to satisfy the condition 
at infinity we require that Tt’ = 0. Consequently 
we cannot match this solution with the solution 
S’$ = 1 for the Stokes layer, and so with 
PrRs % 1 the outer thermal region itself assumes 
a boundary-layer character. Substituting (21) 
into (18) and applying the usual boundary-layer 
arguments, it is easily shown that the thermal 
boundary layer has thickness O[a(PrRs)-*]. 
We observe that the ratio of the Stokes layer 
thickness to this thermal boundary layer thick- 
ness is 

EIRs* 

(PrRs)-* 
= EPr+ 4 1, (26) 

and so, although the thermal boundary layer 
is thin, it is still much thicker than the Stokes 
layer which remains essentially a conduction 
region. We introduce variables appropriate to 
the thermal boundary layer, within which the 
temperature is O(1) and the stream function 
O(Q), where 52 = (PrRs)-* < 1. as 

t(r, 4,~) = T(r, q5, z), Y = Sz- ‘(r - l), 

$(S) = Q$‘“’ 
10 lo. (27) 

The inner expansion of the outer stream func- 
tion i+Vs) 1o, given by equation (21), is, when written 
in terms of the inner variables, 

$:“h = i, + sz& + O(@), (28) 

with 

i1 = SY sin 24, i2 = $Y2 sin 24. 

We accordingly seek a perturbation solution of 
equation (18), expressed in terms of the thermal 
boundary co-ordinates (27), in the form 

fb”’ = tb”; + .Qtb”; + O(@), (29) 

where t’& = $:(I: 4). Substituting (28) and (29) 
into equation (18) and equating coefficients of 
powers of Q, we have as the equations for t’& and 
t’s’ 
01' 

a(1 P’ ) 1' 00 
(32p 

00 - () 

d(,:4) -ay2- * 
(30) 

a(?,, tb”;, a2tb”: _ a&, tb”;, 

a(,:+) -dY2- 
+ yai13 tg,, ___. 

ax 4) a(I: 4) 

apl 

+oO 
?Y' 

(31) 

together with the boundary conditions, 

t’“! = 0 i = 0 1 as Y -+ T' 
01 3 -3 (32) 

t’“! = 

i 

1 i=o 
01 0 i=l 

on Y = 0. (33) 

The boundary conditions (32) and (33) ensure 
that the solution matches both with the trivial 
solution TE’ G 0, for the region outside the 
thermal boundary layer, and the Stokes layer 
solution SE’ = 1, respectively. It can be shown 
following a suitable transformation, (see [6]), 
that equation (30) reduces to the classical one- 
dimensional heat conduction equation with 
solution 

ttb = 1 - erf ((2)” cos 4 Y>. (34) 

Before examining equation (31) for the higher 
order term t:i, we first determine the rate of 
heat transfer from the cylinder using the first 
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order solution (34). The total heat flux per unit 
length from the cylinder is 

Q=- k z _a@, so f3-Y 
i-n 

0 

where k is the conductivity of the fluid. The 
corresponding Nusselt number, based on the 
cylinder diameter and defined as 

Nu = 
Q 

?rk(T3 - TJ’ 

is given by 

2R 

Ns= -f 

n 
0 

From the solutjon (34), the corresponding 
Nusselt number, using (27), (29) and f37) is 

This result has also been obtained by Richard- 
son who uses an approximate method appropri- 
ate for small Prandtl numbers. The motivation 
for this approach is that the thermal boundary 
layer, although very thin, is much thicker than 
the Stokes layer. However the formal procedure 
outlined above is more satisfactory insofar as it 
provides, unlike the approximate method of 
Richardson, a firm basis for calculating higher 
order terms in the Nusselt number (37). We 
note that for Rs = O(1) and PrRs % 1, the argu- 
ments used above will again yield, to first order, 
the result (38) since under these circumstances 
the convention velocity in the thin thermal 
boundary layer is, to first order, simply the slip 
velocity in (9). Perturbations to (38) will of 
course depend on the detailed structure of the 
outer streaming which in turn depends upon 
Rs. For the case Rs e 1 under consideration, 
this structure is manifested in the thermal 
boundary layer by the successive terms of (28) 
Before considering higher order terms we note 

that although PrRs >> 1 is a necessary condition 
for (38) to hold it is not, as we shall see in Section 
4, a sufficient condition. 

We now return to the correction of the rest& 
(38), which we caleuhte from the higher order 
term # governed by equation (31). The solution 
of (31) may be expressed as 

t$\ = b(&cosrC,[-l + erf(olcos#Yt 

+ exp ( - ff2 Y2 cos’ #f] + f(4) cos d, Y2 

x exp ( - a2 Y2 co8 ~$1, (39) 

where 

($ = 2 
2’ 

and 

f(4) = $@/# 

x [2 cosec2 d, + 1 - 24 cot # cosei? fpI. 

This completes the solution (29) to O(f2). We 
use this result to readily show that 

+O[(PrRs)- ‘1). (40) 

This constitutes the principal result for this case. 
Unlike the correction of. relative order 

(PrRs)-*, to the Nusselt number shown in (40), 
Richardson obtains a correction O(ePr*) by a 
method which is not a systematic development 
from his first approx~ation. Since, as we recall 
from Section 1, the theory developed here, and 
implicitly in [lit is basically one in which 
Pr = O(1) and Rs = O(I), Richardson’s correc- 
tion is smaller than that shown in (40). The 
neglect of these more important terms by 
Richardson is due entirely to the fact that he 
ignores the influence of the structure of the 
outer streaming upon convective heat transfer 
in the thermal boundary layer. 

We again recall that although the thermal 
boundary layer is very thin, it is.much thicker 
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than the Stokes layer which plays the role of 
a conduction layer. We anticipate that for 
sufficiently large Prandtl numbers, convective 
effects in the Stokes layer will become important. 
We observe that equation (26) indicates that we 
may expect that the thermal and Stokes layers 
will have the same thickness if EPV* = O(1). 
This leads naturally on to Section 4 where we 
examine thecase lim Rs = O(1). 1imc’Pr = O(1). 

4. HEAT TRANSFER AT VERY LARGE PRANDTL 
NUMBERS 

Rs = O(l), c2Pr = O(1) 
For this case, as we have already anticipated, 

the Stokes layer will no longer play its passive 
conduction role, and convective effects will 
become important within it. Expressing the 
energy equation (10) in terms of the inner Stokes 
layer variables (6) then the governing equation 
for the temperature Y in the Stokes layer is 

!z++ 43)s 

2 a9 =--- 
2@Pr) a?” 

+ O(E3). (42) 

We seek a perturbation solution of (42). with 
c2Pr = O(l), in the form 

5 = F. + ET, + l V-, + O(EJ), (43) 

where z = c (r], 0, Rs, Pr, 7). Substituting (43) 
and the expansion for Y given by (5) into equa- 
tion (42), we equate coefficients of powers of E. 
It can be shown, following a similar procedure 
to that used in deriving equation (18), that the 
leading term Y0 is again time-independent and 
satisfies the equation. 

a( Y(S) 9-(s)) 

age," 
1 av_bs =- 

2@2Pr) F’ (44) 

where the steady Stokes layer velocity, repre- 
sented by !I”$, is given by (7). This important 
equation shows that the thermal boundary 
layer now possesses a full structure on the scale 
of the Stokes layer. 

As is well known, and can be deduced from 
(7) the steady part of the tangential velocity in 
the Stokes layer, which features in (44) under- 
goes a change of sign. The direction of the tan- 
gential velocity is such that at the edge of the 
Stokes layer, fluid is carried over the cylinder 
surface and out away from the cylinder along 
the axis of oscillation. Fluid adjacent to the 
cylinder surface within the Stokes layer is 
flowing in the opposite direction and continuity 
within the boundary layer is maintained by a 
streamline pattern in the form of closed loops. 

A numerical investigation of equation (44) 
was attempted using a standard marching pro- 
cedure, which we describe in Section 4, for 
c*Pr = O(1). This method failed and its failure 
may be attributed to the reversed flow described 
above. The difficulty is analogous to that 
encountered when, for example, a numerical 
integration is attempted to advance a two- 
dimensional steady boundary-layer calculation 
past a regular separation point, and into the 
region of reversed flow beyond. Any numerical 
scheme for integrating (44) with c2Pr = O(1) 
must presumably be based upon a boundary 
value method similar to those employed for 
elliptic equations. We do not pursue this point 
further here but consider below the special case 
$Pr % 1, in which the thermal boundary layer 
is now very thin, on the Stokes layer scale. and 
within which the convective velocity is uni- 
directional. A perturbation solution. as in 
Section 3, is proposed. The first term of this has 
been obtained by Richardson [l]. However, the 
validity of the approach adopted as described 
below is questioned on account of the closed 
streamline nature of the Stokes layer. 

Rs = O(l), e*Pr 9 1 
It can be shown that the thermal boundary 

layer thickness in this case is O([Prc*]-‘a). 
Accordingly we introduce thermal boundary- 
layer co-ordinates p, t where, with CZ = (c*Pr)-*, 

p = K’r/, qp, 0) = F(r/. 0). (45) 

Note that since the velocity in the Stokes layer 
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close to the wall is in the direction of 8 increasing 

!P = b32x + cz3x2 + O(cz4), 

we have, in this case, reverted to the original 

10 

variable 8. The inner expansion of the stream 

1 

function !Pyi expressed in terms of the inner 

(46) 

variables p, 8 is 

where 

sin 28 sin 28 
X1 = Yj-- P2Y x2 = - TP3. 

Thus in the thermal boundary layer we seek a 
perturbation solution of equation (44) in the 
form 

to = too + &to, + LVt,, + 0(&3). (47) 

Substituting (46) and (47) into equation (44) and 
equating coefficients of powers of ui gives as the 
equations for too and toI, 

a(x,Y4J _ 1 a24h 
ah f4 2 ap2 

c-n a(xzT too) 
ah 0) ’ 

n e 0,l. (48) 

The boundary conditions for (48) are 

t 
Oil =Oasp-rco, n = 0, 1, 

{ 

1 n=O 
(49) 

toI3 = 0 n=l 
on p = 0. 

The solution of (48) for too which satisfies (49), 
obtained in terms of the similarity variable 

x = P/g(e), (50) 

is (see [7]), 

t,,(x) = & 
s 

evs3 ds, (51) 
3 

x 

where 
e 

g3(0) = 4 sin-320 J sin* 2s ds. 
0 

The expression for tOI, which represents the 
next term of the solution in our apparently 

self-consistent procedure, has been derived in 
closed form, but it is not presented here. From 
the two term solution (47) we calculate the 
Nusselt number (37), using (45), as 

Nu = E-~Rs*(PE’)+ 

x (1.30 - 0.30(~‘Pr)-+ + o[(~‘Pr)-~]}. (52) 

As we have already mentioned, Richardson 
has obtained, in a slightly different but equivalent 
form, the solution (51) and hence the first term 
of the expression (52). He shows that by the 
introduction of a suitable numerical factor, the 
first term of (52) remains valid, to within a 
multiplicative constant, even in those cases where 
the Stokes layer thickness is not small compared 
to the diameter of the cylinder. As before his 
approach does not permit a systematic develop- 
ment of the solution for the temperature, as in 
(47). However we now question the relevance of 
the model which we have chosen to describe the 
temperature field, as represented by equations 
(45) and (47). 

Consider the dimensionless flux of heat, Q, 
across a station 8 = constant in the thermal 
boundary layer. This is given by 

m ay(s) 
Q= $t,dp, 

s 
0 

(53) 

=&j2[j sin* 2s ds13 F, 
0 

where, to first order, F = ($3 4 a,,(x) dx # 0. 

The result (53) implies that alth&h Q = 0 at the 
axis of oscillation 8 = 0, it is infinite at 8 = n/2 
where the recirculating region for this first 
quadrant terminates. For steady flow past a 
finite body all this heat will be swept downstream. 
However in the present case we may expect the 
heat to be swept back along the recirculating 
streamlines with some, but not all, of the heat 
being carried away along the axis of oscillation. 
We may infer from the work of Grimshaw [S] 
that for this fluid of very small diffusivity, the 
recirculating Stokes layer region is at uniform 

C 
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temperature T # T, TK ; and that this “iso- 
thermal core” region is separated from the wall 
and outer regions by a thin boundary layer in 
which the heat flux is 0(G2). This model then 
requires the heat flux at 8 = 0 to be non-zero 
and 0(S2). This result exposes the weakness of 
our arguments leading up to (52). 

We do not pursue this theoretically interesting 
situation any further. In the next section we 
consider the heat transfer characteristics when 
the streaming Reynolds number Rs 9 1 with 
Pr = O(1). We note a priori that the Stokes 
layer is once more reduced to its purely con- 
ductive role. The only work which has been 
carried out for this case, in [l], is of a highly 
speculative nature. 

5. SOLUTIONS FOR Rs $1 

For large values of the streaming Reynolds 
number, the outer steady flow governed by 
equation (8) assumes a boundary-layer charac- 
ter, the Stokes layer being then embedded 
within this outer boundary layer. From order of 
magnitude arguments, (see [3]), it can be shown 
that the thickness of the outer boundary layer is 
O(aRs-*), or a factor O(E-I) times thicker than 
the Stokes layer. It is within this outer boundary 
layer-that the steady tangential component of 
velocity finally decays to zero. Accordingly, for 
this outer boundary layer we introduce scaled 
variables I$, rj where 

and for convenience, we define a space variable 5 
as t = 412. Consequently because of the sym- 
metry associated with this problem, we only 
concern ourselves with the region 0 < c < n/4. 
Expressing equation (8) in terms of the boundary 
layer co-ordinates (54) we see that the equation 
to be satisfied by $‘$, is 

together with, from (9) 

A 

(1,nti) 

(1 JJ) 

& 

(1 ./l-l) 

(1+i.n+1) 

(1+1,n) 

l+l,n-I) 

(56) 

FIG. The mesh with pivotal points used in the numerical 

integrations. Rs 9 1. 

The condition at infinity ensures that the steady 
tangential velocity component dies away to 
zero and the condition at’! = 0 is to be inter- 
preted as the matching condition with the Stokes 
layer solution (7). 

A limited study of the mechanics of this outer 
boundary layer has been carried out by Stuart 
[3] and Riley [9]. Using different methods, both 
these authors present results from solutions of 
equation (55), in the form of series about the 
stagnation point 5 = 0 of the outer steady flow. 
However the solution obtained by the above 
authors does not, for the number of terms 
retained in the series, satisfactorily describe the 
flow over the whole region 0 < 5 < rc/4. 

In this paper we describe briefly an accurate 
numerical method of solving equation (55), 
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subject to the boundary conditions (56). Here 
we only outline the numerical procedure used 
and refer the interested reader to [lo] where 
full details of the computation scheme may be 
found. 

For the numerical method which was em- 
ployed it is convenient to work with the steady 
tangential and normal velocity components, 
related to $‘,sb as 

a(S) - a;$ (57) t$S) = _ 9, 

respectively. Thus, integrating (55) once with 
respect to f we have, together with the con- 
tinuity equation, 

au@) au@’ _ 
(58) 

together with, from (56), 

u@’ = 3 sin 4& Y(@ = 0 at f = 0, 

a@)=0 as q+co. 
(59) 

We shall also require u@) = 0 at < = 0. The 
problem of solving numerically the coupled set 
of non-linear partial differential equations (58) 
is reduced, using an implicit finite difference 
scheme, to a simple marching procedure. A 
double suffix notation is used as shown in 
Fig. 2. With 1 = 1 at 5 = 0 and n = 1 at 
ij = 0, then Us, n is the value of u@) at the pivotal 
point (E, n), distant (1 - l)Ac from 5 = 0 and 
(n - l)Aq from q = 0. The computation pro- 
cedure enables us to evaluate u(* at (I + 1, n + 1) 
from a finite difference form of (58) in terms of 
the values at the other five grid points. The deri- 
vatives in the differential equations are replaced 
by first order central differences and quantities 
are evaluated at [(l + $)A& nAq]. For example, 
the derivatives &P/a{ and c%P~/~~~ in (58) are 
replaced by 

= @s),+l,. - ~(“1, J/A5 3 

(60) 

= (%+1 - 2ii, + iin_ 1 )/Ad’, 

where ii = $u@), n + u@),+ 1 J. The non-linear 
term u@)%.P/a< is quasilinearized so that only 
linear equations need be solved in each cycle of 
an iterative procedure which is used to solve 
the non-linear equations at each value of <. Thus, 
if [zPI++ Jo) is the approximation used for 
u(S) 1 ++, n at the jth cycle of the iteration, then the 
approximation used for [ucS)(&P/a~)], + +, n at 
the (j + 1)th cycle is 

-[u(S)‘~+~,~](~)-[~(S)‘~ J(j). (61) 
?AZ 

The values of rP,++, which are required in 
the momentum equation, are obtained by 
writing the continuity equation in finite dif- 
ference form centred upon the mid-point of 
the mesh [(I + +)A<, (n + $Aq]. Thus 

a(s) 
1+*,n+1 = t)(s) I++, n + G(u, AL Ati), (62) 

where G involves the values of the current 
iterate of u at the mesh points, and zP),++ 1 = 0 
by (59). Substitution of the difference approxi- 
mations into the momentum equation displayed 
in (58) using (61) and (62) yields the following 
set of linear equations for the jth iterate to 
&) 1+ l,n at the station 5 = IA<, 

a, CU(S)l+I.n+21(i) + b, CU(S),+l.n+Il(i) 

+ C” [&) I+ 1, n](j) = 4, (63) 

where n = 1,. . . (N - 1). The value of N is 
chosen so that q, = NAFj adequately represents 
the “outer edge” of the boundary layer. In (63) 
the coefficients a,, bn, c,, and dn depend upon 
the known quantities A& A& the previous 
iterate [u@)](~- l) at the mesh points, and 
a(S) 1++ n calculated from (62). Thus, since from 
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(59) we have u(“~ + 1 N+ i G 0, Us+ 1 , = 3 sin 
(41AQ, the equations (63) represent N - 1 
equations for the N - 1 values of the jth iterate 
[U(S) 1+ 1. Jj . . P’,+ 1 N l(j). This set of simul- 
taneous equation (63) may be readily solved for 
[&‘](j) at the mesh points (I + 1, n), n = 1. 
N - 1 by triangular resolution and back sub- 
stitution. The iterations through (62) and (63) 
were terminated when the sum of the absolute 
values of the differences of the quantities 
UW I+ 1 n between successive iterations did not 
exceed some prescribed tolerance E’ and the 
values so obtained were deemed to represent 
the solution at that station. To advance the 
solution a further step A5 we require starting 
values for the iterative scheme described above. 
For each value of 4, except 5 = 0, the iteration 
was started by taking [&‘,+ 2. Jl = u(“,+ L n. 
At the stagnation point 5 = 0 the solution’is 
simply u(‘) s 0. To check the accuracy of the 
solution obtained, various values of A<, A& N 
and E’ were used. By employing standard extra- 
polation formulae a solution accurate to live 
decimal places has been obtained. 

The above finite difference scheme for the 
non-linear differential equations (58) consumes 
relatively large amounts of computer time. A 
complementary method based upon momentum 
integral techniques has been devised, which 
reduces the problem described above to the 
integration of a system of ordinary differential 
equations. Integrating the momentum equation 
in (58) from q = 0 to @ = 8~‘ gives 

n 

d _ 
dr s 

n 

(64) 

Profiles for u(* of exponential type were intro- 
duced in (64) and further details of the develop- 
ment of the method may be found in the 
Appendix to this paper. 

An overall picture of the flow field may be 
obtained from Figs. 3-5. Figure 3 shows profiles 
of the velocity component u@’ at various stations 
around the cylinder. Figure 4 shows the dis- 

placement thickness, defined in our problem as 

S,(5) 1 

(2aRs-*} 
=---- 

3 sin 45 s 
a(” dq . (65) 

0 
Included in Fig. 4, along with the value of 6, 

obtained from the finite series difference solu- 
tion, are values calculated from the series 
solutions of Stuart [3] and Riley [9], and from 
the approximate momentum integral method. 

p: 

FIG. 3. Transverse velocity profiles associated with the 

steady streaming for Rs % 1. 

The limitations of the former method and 
effectiveness of the latter are revealed. A similar 
comparison is made for the shear stress at the 
inner edge of the outer boundary layer. Thus if 
r0 is the shear stress, 

(66) 

where /J is the coefficient of viscosity, is shown in 
Fig. 5. An interesting feature of this flow, postu- 
lated in [3] and [9], is that uCs) is non-zero at the 
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axis of oscillation. From the symmetry of the 
problem under consideration we shall, at the 
axis, have a collision of boundary layers, 
originating from two quadrants, and fluid will 
be ejected along the axis in the form of a jet. 

0 

t 

t 

/ 
,’ 

FIG. 4. The displacement thickness obtained from the finite 
difference, --; series, ---; and momentum integral, 

-- , solutions for Rs + 1. 

A theoretical and experimental study of these jet- 
like flows, in a variety of axi-symmetric situa- 
tions will be the subject of a subsequent paper 
[13]. The importance of this flow structure from 
the present point of view is that heat which is 
carried over the surface of the cylinder will be 
swept away along the axis of oscillation, thus 
avoiding the difficulties encountered in the 
previous section. 

We now employ the results derived above for 
the steady streaming to study the transfer of 
heat from the cylinder, maintained at uniform 
temperature, when Rs is large. 

Rs 9 1, Pr = O(1) 
We identify temperatures in the outer velocity 

boundary layer by 

VI, 5, r) = T(r, 0, r), (67) 

where we note, from equation (54), that q = 
Rs*(r - 1)/2. Expressing equation (18) in terms 
of the boundary-layer co-ordinates (54) and (67) 
we find that the equation to be satisfied byft) is 

together with the boundary conditions, 

fg) = 1 on 4 = 0 9 

f(“) 0 (69) 
0 

= as C-b 00, 

FIG. 5. The shear stress at the inner edge of the outer velocity 
boundary layer from the finite difference, ---; series, 
- .--; and momentum,integral, - -, solutions for RS g 1. 

and a suitable condition on 5 = 0. We note 
again that the condition on q = 0 ensures that 
the solution matches with that in the purely 
conductive Stokes layer. 

With “yA _ UC”) and aJ;:::= _ v(S), 

arj at 
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calculations for which have been carried out as 
described above, equation (68) lends itself 
readily to the finite difference scheme which was 
used to solve the momentum equation. As before 
derivatives are replaced by first order central 
differences. The resulting difference equations 
can then be expressed in an analogous form to 
(63) and are again solved by triangular resolution 
and back substitution. The boundary conditions 
for the resulting difference equations are (69). 
The initial condition which is used to start the 
solution at < = 0 is determined as follows. At 
f = 0, u(’ = 0 and Vs is given by 

VW = - 2\/3( 1 - exp ( -2V/3ij)). (70) 

The solution of equation (68) for tl$ij/Ze at the 
stagnation point 5 = 0 is then found to be 
iii’s1 
-JCL= 

- 2J31’1 

=L$ M(t, 1 -t Pp; PJi 

x exp { -Pr[2j3ij + exp(-2,136) - t-J, (71) 

where N is a confluent hypergeometric function, 
(see [xl]), Equation (71) may be sofved for the 
initial temperature distribution using a simple 
quadrature. Since the energy equation (68) is 
linear, the time taken to solve the equation over 
the entire field of integration is only a fraction of 
the time needed for the evaluation of the non- 
linear velocity equations (58). Thus with u(‘) and 
t’@) determ~ned~ this technique prosides a rapid 
and accurate method of calculating heat-transfer 
rates over a ~%ie range of Prandtl numbers. 

A simple approximate method has been 
devised. and used in conjunction with that 
already described in the Appendix for the 
momentum equation. It is based on the equation 

” 

obtained by integrating (681 with respect to 6. 
Further details of the method are to be found in 
the Appendix. It is an efficient and accurate 
method over only a limited range of Prandtl 
number of U(1). 

FE. h. ‘l’he local heat transfer for Pv 1: O-71. 1.0, 54 from the 

finite difference solution together with the local heat 
rm~sfc;_ for PI- = I-0. - .- --. derived from the momentum 

integral solution for Rs $ I. 
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In Fig. 6 we show the behaviour of the local 
heat transfer as a function of 5 for Pr = 0.72, 
1 and 5, based on the finite difference calcula- 
tions. Included in Fig. 6 is the local heat transfer 
for Pr = 1.0 calculated from the approximate 
method given in the Appendix. Figure 7 shows 
profiles of the temperature rg” at various 
stations around the cylinder for Pr = 1.0 ob- 
tained from the finite difference method. Calcu- 
lations have been carried out using the finite 
difference technique for the range of Prandtl 
numbers, 0.2 < Pr < 10. Outside this range the 
method becomes less effective due to the disparity 
in thickness between the thermal and velocity 
boundary layers. Consequently we supplement 
these calculations with asymptotic analyses, 
valid for large and small Prandtl numbers 
respectively. 

Rs >> 1, Pr 9 1 
When Pr B 1, the thermal boundary layer 

will again be so thin, relative to the outer 
streaming boundary layer, that we may antici- 
pate the convection velocity within the thermal 
boundary layer to be, to a first approximation, 
simply the slip velocity in (59). We show that 
this is indeed the case and the result (38) for the 
Nusselt number obtained in Section 2 for 
Rs 4 1, PrRs 9 1, is recovered. Perturbations 
to the result (38). which depend upon the detailed 
structure of the outer streaming, will of course 
differ here from those calculated in Section 3. 

As f -+ 0 we note that 

$:“b Iv f,cr,a + f,(&? + 0(ii3)Y (72) 

where, from (56), f,(t) = 3 sin 45 and f,(r) is 
numerically evaluated from the velocity gradient 
at q = 0 shown in Fig. 5. Applying the usual 
boundary-layer arguments we see that the 
convection and conduction terms in (68) are 
comparable for Pr 9 1 if we set 

and 

p = P&j, (73) 

2,(P, 0 = &J(tl, 5). 

The inner expansion of the outer stream function 
$‘$ expressed in terms of the “inner” variables 
(73) is, from (72), 

cpy; = X, + Pr-*X, + O(Pr-‘), (74) 

where 

X, = 3 sin 45p, X, = f#)PZ. 

Accordingly we seek a perturbation solution of 
(68) expressed in terms of the variables (73), for 
Pr % 1, of the form 

Zt) = $!A + Pr-+t~~ + O(Prml). (75) 

Substituting (74) and (75) into equation (68) and 
equating coefficients of powers of Pr-*, we have 
as the equations for Zfi and tt{, 

qx,, ig, a2P 

&I,() - 3f= -n 8(X2 %A) (n = (),I) atd 0 ’ 
(76) \ , 

together with the boundary conditions 

g = 
i 

1 n=O 

0 n=l onij=O 

W - t,, - 0 as ij + co, n = O,l, 
(77) 

and a suitable initial condition at 4 = 0 derived 
as that for Pr = O(1) in equation (71). We see 
that the form of equation (76) for Zb”l, is analogous 
to that of (30), from which we deduce the corres- 
ponding result (38) for the Nusselt number. The 
solution of equation (76) for t$Ji has been 
derived numerically, using the finite difference 
scheme described above. The Nusselt number 
calculated from the two term solution (75), 
using (54) and (73), is 

Nu = Rs*Prt 

X - 0.26 Pr-* + O(Pr-‘) . (78) 

We see that the correction term in (78) for 
Rs % 1, Pr % 1 is indeed different in nature to 
the corresponding result (40) found in Section 3, 
which is valid when Rs 4 1 but with PrRs g 1. 
We attribute this to deviations of the velocity 
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field from the Stokesian formula (21) when Rs 
is large. 

For very small Prandtl numbers, the thermal 
boundary layer will be large in thickness com- 
pared with the outer velocity boundary layer 
and the convection-conduction balance will be 
found in a region where the tangential steady 
velocity is effectively zero. We show that in this 
case, in contrast to the case Rs 4 1 Pr -3 1 
studied in Section 3 where the convection 
velocities were shown to be too weak to ever 
counteract diffusion, that the entrainment velo- 
city, when Rs ti 1, eventually dominates the 
outward diffusion. 

As a first approximation to $” we solve, from 
(68) with Pr -6 1, 

a2p 

- 0, a,-,” = 

tg) = 1 on ij = 0, 

I!;)=0 as q+cc, 

(79) 

together with an initial condition which may be 
derived from (71). The solution of (79) which 
satisfies the condition on q = 0 is 

I(S) 
0 = 1 + Qoij. (80) 

We see that we cannot satisfy the infinity condi- 
tion in (79). We thus relax the infinity condition 
and anticipate that Qo(5) will be determined by 
matching this solution with a solution appro- 
priate to an outer region in which there is a 
balance between convective and diffusive terms 
in (68). The scale of this outer region, where 
$$, = 0( 1) and I’$ = O(l), in which convective 
and diffusive effects are comparable, is O(Pr-‘). 
Consequently we set 

tj = Prij, 

WI, 5) = @L 07 

and 0 satisfies 

(81) 

a20 v ao=, 
aq’- *aq ’ (82) 

where 

is shown in Fig. 8. It is interesting to note that 
the outer velocity boundary layer under dis- 
cussion in this section exists only by virtue of the 
fact that Vm < 0 for all 5. This result was 
established by a simple argument in [9] and is 

15 I 
s/8 n/4 

FIG. 8. The radial velocity associated with the steady stream- 

ing, at the edge of the outer velocity boundary layer, Rs 9 1. 

conclusively demonstrated here. Before con- 
tinuing our study of the heat transfer character- 
istics for Pr 4 1, we note that the outer expan- 
sion of the stream function is given by $($ = f(t) 
plus exponentially small terms. This means that 
(82) is the appropriate equation to all orders in 
the outer region. 

The solution of (82) must match with the 
iqner solution (80) and satisfy 

O=Oasfi-+cO. (83) 

The solution of (82) which satisfies (83) is 

0 = Dexp{Vafl}. (84) 
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D is a constant to be determined by matching 
with the inner solution (80). The inner expansion 
of 6 expressed in terms of the inner variables 
f, ?j is 

v: -2 
fb”’ w D{ 1 + PrV, q + Pr2 2 tj + O(Pr3)}. 

(85) 

Interpreting (85) as the outer boundary condi- 
tion for I$) we expand the inner solution as 

I($ = I,, + Prf,, + Pr’t,, + 0(Pr3), (86) 

with the expansion of the outer solution now 
taking the form 

D = D, + PrD, + Pr’D, + O(Pr3), 

since (82) is appropriate to all orders. Matching 
the solutions (80) and (84) to O(1) gives Q. = 0, 
D, = 1 and so I,, = 1. With this unstructured 
form for fOO, IO1 also satisfies (79) but with 
I,, = 0 on ij = 0, and so matching to O(Pr) 
gives D, = 0 and I,, = V,ij. Thus 

I($ = 1 + Pr Vm’mij + O(Pr’). (87) 

The equation for to2, found by substituting (86) 
into equation (68) and equating coefficients of 
Pr2, is 

Since we are primarily concerned with the 
behaviour of (a&,,/%&,, we integrate equation 
(88) once with respect to q from Fj = 0 to q = co, 
to give 

(%),;. = Vmlb+F]dij- v,l i 

0 0 

Fidij. (89) 

In deriving equation (89) we have used the 
condition 

at,, 
aq 

N V,Z asf-, co, (90) 

which ensures that I,, matches with the outer 
solution (84). We numerically evaluate the 
integrals in (89) using the computed results 
obtained earlier for u@) = @‘$,/a~ and u@) = 
- @($/a& The resulting two term Nusselt 
number, obtained from the first three terms of 
(86) using equations (37), (54) and (81) is 

NU 
- = 2.71 Pr - 5.51 Pr2 +.0(Pr3). 
R& 

(91) 

FIG. 9. The computed Nusselt number, -, together with the asymptotic solutions (78), 
-. -; and (79), --, for Pr $ 1. Pr + 1 respectively for Rs $ 1. 
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The computed Nusselt number together with 
the asymptotic solutions (78) and (91) for Pr 9 1 
and Pr G 1 respectively are plotted in Fig. 9 as 
a function of Pr. It can be seen that the computed 
solution is consistent with the asymptotic 
solutions. We note in particular the usefulness 
of (78) which agrees with the finite difference 
caldulations to within less than 1 per cent for 
Pr > 7.5. 

Previous to the work reported here, the only 
estimate that has been made (see [l]) for the 
local heat transfer when Rs % 1, is that near the 
stagnation point given by equation (7 1). Taking 
this local result (71) for the heat transfer and 
assuming that the wall temperature gradient 
does not deviate far from the cos #-dependence, 
which we have shown holds, to first order only, 
for Pr $ 1, Richardson [1] attempts to obtain 
an upper limit for the Nusselt number for Rs % 1. 
The Nusselt numbers based on Richardsons’ 
calculation for Pr = 0.72 falls below the value 
calculated here by about 10 per cent. His result 
in fact yields smaller values than those calculated 
here for all Pr and consequently, in no sense, 
can be accepted as an upper bound for Nu. 

In the work described so far we have discussed 
idealized situations, in which the vibrating 
cylinder is maintained at a uniform temperature. 
and assessed the heat transfer characteristics. 
However in more realistic situations the surface 
temperature may not be uniform and we may. 
for example, be faced with a situation in which 
heat is generated internally within the cylinder. 
In the final section of this paper we discuss such 
a case, although our model is again a fairly 
simple one. 

6. INTERNAL HEAT GENERATION PROBLEM 

All previous sections have dealt with the 
heat-transfer characteristics associated with a 
uniformly heated surface. This situation could 
be realised quite simply in practice by passing a 
heated liquid through a thin walled tube. HOW- 

ever other situations may arise in which heat is 
generated internally, such as heat generation by 
chemical reaction or radioactive decay. In 

these situations an internal heat-conduction 
problem must then be solved simultaneously 
with the external fluid flow problem. The sim- 
plest possible situation of this kind, which we 
discuss here, is one in which heat is produced 
by a line source at I = 0, realisable for example 
by passing an electric current through a wire, 
which is embedded along the axis of the solid 
cylinder. We assume that the total flow of heat 
per unit length of the wire is uniform. 

For this problem we take, as a particular 
example, the external fluid flow to be that which 
was discussed in Section 5 which is appropriate 
for large streaming Reynolds numbers. The 
temperature distribution in the external region 
is thus governed by the boundary-layer equation 
(68). and consequently a mixed parabolic (ex- 
terior), elliptic (interior) problem is to be solved. 
We now describe the method devised to calcu- 
late the steady temperature distribution within 
the cylinder under these circumstances. The 
calculation outside the cylinder is closely related 
to that described in Section 5. 

Since we are no longer insisting that the wall 
temperature qj+ remains constant, we non- 
dimensionalize temperatures in the equations 
which are to follow by setting 

G + 
1-i 

T ;= ____ .Le 

:QPnk, i 

(92) 

where Q is the total heat flux per unit length 
from the wire, which we assume is constant. and 
li, is the thermal conductivity of the solid cylin- 
der. We identify the steady part, with which we 
are concerned, of the dimensionless temperature 
within the cylinder by T. Then, since q must 
satisfy Laplace’s equation, 7;(r, (12) for this two- 
dimensional problem is a solution of 

For a line source of heat at the origin r = 0, the 
boundary condition which must be satisfied by 
T is dl: 

Ye== - lonr=O. 
ar 

(94) 
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We recall that the governing energy equation 
in the external region is given by (68) where 
q = R&r - 1)/2, together with a boundary 
condition 

?$ = OasQ -+ cc, (95) 

and a condition at r = 0 derived from (71). If 
k, is the thermal conductivity of the fluid, then 
the boundary conditions which we apply at the 
change of medium r = 1, at which there is com- 
plete thermal contact, are 

on r = 1 (q = 0) (96) 

where the latter boundary condition ensures 
that the heat flux is continuous over the surface 
of contact. The problem posed by (68) and equa- 
tions (93)-(96) is now well defined and we next 
describe the method of solution. 

In view of the linking of the exterior problem 
of parabolic nature and the elliptic interior 
problem, by the conditions (96), we adopt an 
iterative method of solution. This is based upon 
the fact that from the solution in either region 
that in the other may be determined. We restrict 
our attention to the single case Pr = 1.0 and we 
begin by describing separately the methods by 
which the solutions in each region are deter- 
mined. 

Equation (93) together with the boundary 
condition (94) admits a solution of the form 

q = - log, r + @(r, 4), (97) 

wherewe require that @ be finite at r = 0. For a 
circular cylindrical geometry, @ may be con- 
veniently written as 

co 

@ = 1 S{an cos n4 + b, sin P+}. 
n=O 

(98) 

If we now set q(1,4) = G(4), then from the 
symmefry which this problem displays about 
the lines 4 = 0, 7r/2, G(4) has the following 
properties(i) G(4) = G( - #), (ii) G(4) = G(4 + 7~) 

from which we deduce that b, = 0 and a,,, 1 = 0 
for all n in equation (98). Consequently we find 

G(4) = a, + f uzn cos 2n4. (99) 
II=1 

Applying the standard Fourier analysis tech- 
niques to G(4), we have 

n/2 
2 

ao =x s 
G(t) dt, 

0 

n/2 @- 

4 
a2n =; J G(t) cos 2nt dt. 

0 

Thus, if G(4) is known, the solution for the 
interior region is easily found. 

If for the exterior region, the derivative 
(a?$/aQ)+, is known, we may, using (71), solve 
equation (68) appropriate to the exterior region 
in the manner described in Section 5 using finite 
difference techniques. 

An obvious iterative procedure now presents 
itself. From the solution in the exterior region 
we may determine t’$ on q = 0 which in view 
of the boundary condition (96) renders the 
solution of (93) determinate in the interior, as 
above. From the boundary condition (96b) 
we then take, as the next approximation to 

(aI:)iaq),= o, 

(101) 

from (97) and (98), where the coefficients u2n 
are given by (100) using the newly calculated 
values for G(4). Using (101) as the next approxi- 
mation for the wall temperature gradient, the 
above operations are then repeated. The itera- 
tive scheme, may be initiated in a fairly arbitrary 
manner and is terminated when the absolute 
value of the sum of the differences of G(4) at 
the (j + 1)th and jth cycle is less than some 
prescribed tolerance. 
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An important parameter in this scheme is the 
dimensionless quantity 2k, Rs-*,ik, which ap- 
pears explicitly in (101). Since we are restricting 
the analysis to Pr = O(l)which is true for most 
gases, we take air, in which k, = 6 x lo- 5 
Cal/cm2 s “C/cm as a typical example. We then 
find that we may vary the ratio k,/k, from as 
large as 2 x lo3 for metallic cylinders to 
k,/k, = O(1) for non-metallic materials. We 
recall however that for the velocity field we have 
chosen to use in the exterior problem, the associ- 
ated streaming Reynolds number is large. Con- 
sequently for this model, for self-consistency 
within the framework of our limit processes, we 
choose values of 2k,Rs-*/k, which are smalf 
compared to unity. 

During the course of the computation for this 
particular example it was found that for values 
of 2k,Rs-*/k, no larger than 0.2, the resulting 
Fourier series for G(fp) in (99) converged very 

FIG. 10. Isotherms within the cylinder for 2k,Rs_f/k, = OS. 
Rs % 1. The axis of oscillation is indicated and the broken 

lines represent circular arc segments. 

slowly and unless more than thirty terms in (99) 
are included, which demands a very tine mesh 
size in the +-direction, the equation (99) is an 
inadequate representation of G(#). For details 
of the technique used to improve the conver- 
gence of (99) which are based upon methods due 

to Shanks [12], and which enable a larger 
range of 2k,Rs-&/k, to be considered, reference 
may be made to [lo]. 

As a particular example, we show in Fig. 10 
the isotherms within the cylinder for the case 
2k,Rs-*/k, = 0.5. This figure shows very well 
the distortion of the isotherms near r = 1 from 

FIG. 11. Profiles of temperature and temperature gradient at 
the wall as a function of 5 for Zk,Rs-*/k, = 0.5. Rs % 1. 

the concentric circles which we may expect if 
there were no motion in the exterior region. As 
we approach the heat source at Y = 0 the effects 
of the convective velocities in the exterior region 
become undetectable, and the isotherms do 
indeed revert to their familiar circular shapes. 
We also display in Fig. 11 the values of ?$ and 
~~~)/~~ at q = 0 in the solution for this case 
which was achieved after fifteen iterations to 
yield accuracy to three significant figures. 
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APPENDIX 
The integrated form of the momentum equation in (58) 

upon which we base our approximate method is 

a3 

d ads) 
G 

&)2 &j = - - 
() ati 

64.1) 
ii=0 0 

Profiles for u(” are assumed as follows 

&I = ~{~c-%‘d + bc-%i# + ce-%i,ib}, 
(A.2) 

where U = 3 sin 4& The unknowns a(& b(l), c(t) and S(r) are 
to be determined by requiring that (A.l) is satisfied and that 
the following conditions are also satisfied 

azuw au'" 
u’” = ii,--- = c-onq = 0, 

afi* at (A.3) 

puts) _ aw 
,$=u~onij=O. (A.4) 

The conditions at infinity are trivially satisfied by (A.2): the 
compatibility conditions (A.3b) and (A.4) are derived from 
the basic momentum equation in (58). From (A.3) we require 

b = $,I - 1 - SC), a = $4 - 1 + 5c), (A.5) 

and from (A.4) 

_ az ac 
U$’ + iiii~~~= - 2iizay = t,, (‘4.6) 

where 

and 

t1 = Iz - $2 + 1 - 2c), 

t, = 2c(l + 11) - (1 - l)(n - 4), (A.7) 

Substituting (A.2) into (Al) we have the further equation, 

az ac 
u-t, + iiii5$t4 + iizt, - = t,, at ae 64.8) 

where 

tg = &(57 - 4212 + 5A2) + &&124c - 57~12 + 37c2), 

t, = j~124 + 74C - 19n), (A.9) 

t, =$(180 - 24512 + 701’ - 513 - 180~ - 2481~ 

+ 381% - 741~‘). 

The equations (A.6) and (A.8) have to be integrated numeri- 
cally from 5 = 0 to determine z and c; a and b then follow 
from (A.5). For a boundary layer starting from a stagnation 
point we require that zg and cg remain finite so that t, = t, 
= 0 when ii = 0. It therefore follows from (A.7) that 

(A - l)@ - 4) 
c= 

2(12 + 11) 
at < = 0. (A.10) 

Substituting this value of c into (A,9) we find that the only 
physically acceptable root of t,(A) = 0 is 1 = 1.0 and so 
from (A.7) and (A.lO), 

z(0) = & . c(O) = 0.0. (A.ll) 

We solve equations (A.6) and (A.8) subject to the boundary 
conditions (A.1 1) using a fourth order Runge Kutta process. 
The displacement thickness S,/< and the shear stress r,, at 
the inner edge of the outer boundary layer are found by 
substituting the assumed profile (A.2) into equations (65) 
and (66) respectively to give 
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‘= $7 - ?? i- 4c). 
{2&-f} 6 

IA.121 

The integral form of the energy equation (68) is 

1 

fA.13) 

0 
Exponential profiles for?‘,“’ are assumed as follows 

ip’ = de-“& + ee-‘“.“’ + f e--aiih,, (A.14) 

where the unknowns d(t), e(t), f(t) and S,(s) are to be deter- 
mined by requiring that (A.13) be satisfied and that the 
following conditions are also satisfied 

(A.15) 

The conditions at infinity are trivially satisfied by (A.14): 
the compatibility conditions (A.tSb) and (A.16) are derived 
from the energy equation (68). From (A.15) we require 

d = $(4 + 5.f). e = i(8f - I), (A.17) 

and from (A.161, using iA.7~). 

-t (2 - *Vf2’ 
A22iiPr 

iA.18) 

where d = 6,/6 substituting the velocity and temperature 
profiles given by (A.21 and (A.14) respectively in (A.13) we 
have the further equation 

4;’ ( 1 -jj 
= . . . . . .._ _._. 

3uNE, Pr 

where 

1’ 
+--- 

3fd 

+ _ + I’.- e 

2 + 24 3 f 3d 

i-c 
i 

(A.20) 

and a. h. d and e are given in (A.5) and (A.17). Equations 
(A.18) and (A.19) have to be integrated numerically. simul- 
taneously with equations (A.6) and (A.8), to determine f’: 
A2: d and e then follow from (A.17). To integrate (A.18) and 
(A.19) starting from the stagnation point < = 0 we require 
fr and 6; to remain finite at 5 = 0. It therefore follows from 
(A.18) and (A.19) that 

9 
(1 -.f’)=-.-- 

(11 - Pr 4’) 

A” 
_ 2(1 - .f’) 

3Pr N 
i 

at < = 0. iA.21) 

respectively. For Pr = l,O, we find that on eliminating j in 
(A.21) and solving the resulting sixth degree equation in d, 
the only physically acceptable root is 

so that 

A = 1.037382. (A.22) 

1’ = 0.093093. 

Equations (A.@, A(8), (A.18) and (A.19) are solved together 
with the boundary conditions (A.11) and (A.221 using a 
fourth order Runge-Kutta process. Values for the local heat 
transfer (%~‘/a~),, are then found from the expression 

2(1 - I) = __-:._, 
361” 

TRANSFERT THERMIQUE PAR UN CYLINDRE VERTICAL VIBRANT 

R&m&On a obtenu des rtsultats thkoriques pour le transfert thermique par un cyiindre circulaire 
oscillant dans un fluide visqueux illimitb au repos. L’amplitude de l’oscillation est supposCe petite com- 
par&e au rayon du cylindre, qui, pour la plupart des exemples considkts, est suppod &tre ?I la tempkrature 
constante. L’analyse est bake sur l’utilisation du champ dynamique acoustique et les C~S de petits et 
grands nombres de Reynolds de l%coulement sont consid&& Pour de grands nombres de Reynolds, il 
a Btk calculk une solution pour le champ d’koulement permanent non determink antkieurement. Les 
rCsultats obtenus couvrent un large domaine du nombre de Prandtl. La mtthode des dheloppements 
asymptotiques est exploit&e dans l’analyse et les rksultats calcules sont tgalement compktks par une 
mkthode approchke bask SW une forme int6grke des equations de base. La relation entre le travail prisentk 
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et d’autres contributions correspondantes deja publiees est discutee. Dans une section finale l'attention 
est port&e sur une technique de determination de la distribution de temperature pour une source lineaire 

de chaleur pfade au centre du cylindre oscillant. 

WARMEUBERTRAGUNG VON EINEM VIBRIERENDEN KREISZYLINDER 

Zusammenfananng-Theoretische Ergebnisse wurden fiir die Wlrmeiibertragung von einem kreisfiirmigen 
Zyhnder erhahen, der in einer unbegrenzten sonst ruhigen viskosen Fltissigkeit oszillierte. Die Schwin- 
gungsamplitude sol1 klein gegentiber dent Zylinderradius sein. 

Die Zyl~de~em~ratur wurde fii die betrachteten Beispiete ah konstant angenommen. 
Die Analysis basiert auf dem akustischen Stromungsfeld. Fglle von kleinen und groi3en Reynolds- 

Zahlen werden betrachtet. Fiir groBe Reynolds-Zahlen wird eine Losung fib das bisher unbestimmte 
stationare Striimungsfeld berechnet. Die erhaltenen Ergebnisse tiberdecken einen grossen Bereich der 
Prandtl-Zahl. Die Methode der asymptotischen Entwickhmgen wird in der Analysis ausgenutzt, und such 
die berechneten Ergebnisse werden durch eine Naherungsmethode erganzt, die auf einer integrierten Form 
der Hauptgleichungen basiert. Die Beziehungen zwischen der voriiegenden Arbeit und anderen ent- 
sprechenden Beitragen in der Literatur werden erortert. In einem ~hlu~ab~hni~ wird zur B~tirnm~g 
der T~~raturverteiIung eine Technik verwendet, die sich ergibt, wenn eine linienfiirmige W&rmequelle 

im Zentrum eines schwingenden Zylinders liegt. 

HEPEHOC TEIIJIA OT B~~P~PY~q~rO ~~~Ib~E~OPO ~~~~H~PA 

AH~oTa4~~-~o~yqeH~ TeopeTasecnae pesynbrarbt no mxnefioeau5rro trpouecca neperioca 
Tenna OT KOJIbneBOrO nktJtEiHfipa, Kope6nlomerocn B HeOrpaHkIueHHOti BR3KOt% HCYIAKOCTH, 
ktaXO~&iBmetkK B COCTORHIIH nOKOR. npeEnOJIaraeTCR, YTO aMnnIlTyAa Kone6aHun Mana no 
CpaBHeHHIO C pamIyCOM nIiJtWi;qpa, TeMnepaTypa KOTOpOrO B 60JtbmHHCTBe 113 paCf?MaTpH- 
RaeMbtX IIpHMepOB npHHHMaeTCff nOCTORHHOti. P OCHOBe aHaJIFt3a JIBEWIT MCnOJtb30BaHAe 
aliyCTH4eCKOfi MOAeJtll n03IR TeqeHAR. PaCCMaTl)HBaIoTCE CnyqatI MajIbIX II 6Onbrunx wrcez 
PeZiHoJrbgca Ha6e~a~mero I'tOTOKa. &rR 6O~bIlll~X 3rrayeH&4 4biczta Pet%HOJIbJ&i ~O~yqCHO 
~~c~eHHoe pemeHEe parree me ~ce~e~oBa~~I0~ 3aAasa 0 CTa~~oHaoHo~ no;Ie Teqetirrn. 
Pe3yJibTaTb.I IlOJly=teHbt AJIFl mt?pOKOrO AHaITaaOHa 3HaseHHi gllCJIa BpaHATJIFI. B ariannae 
ACHOJtb30BaH MeTOA B3aElMHWX aCAMnTOTM'JeCKHX pa3JtOEteHMti H pe3yJtbTaTbI YI?CJIt?HHOFO 
fNUYit?Ta CpaBHeHbI C pe3yJIbTaTaMM np~6nmKeHHoro pemeHBR MHTel'panbHbIM MeTOAOM. 
AaeTCFI CpaBHeHRe pe3yJtbTaTOB pa6oTbt C JJaHHMMM aHaJtOrHYHbIX pa6oT JJpyrlrx aBTOpOB. 
~OCneAHFIfl YaCTb pa60Tbt ItOCBKmeHa MeTOAIlKe OttpefieJIeHHK paCnpeAeJTeHAR TeMnepaTypbt 
ncnysae,KOriZit ~aOeErKoJte6nm~eroc~s~nesnpacocpenoTosee.~~~eZt~br~ RCTOYHBK Tenaa. 


