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Abstract—Theoretical results are obtained for heat transfer from a circular cylinder oscillating in an
unbounded viscous fluid which is otherwise at rest. The amplitude of the oscillation is assumed small
compared to the radius of the cylinder, which for most of the examples considered is assumed to be at a
constant temperature. The analysis is based upon use of the acoustic streaming flow field and consideration
is given to the cases of small and large streaming Reynolds numbers. For large streaming Reynolds
numbers, a solution for the previously undetermined steady streaming flow field is computed. The results
obtained cover a wide range of Prandtl number. The method of matched asymptotic expansions is exploited
in the analysis and the computed results are also supplemented by an approximate method based on an
integrated form of the governing equations. The relationship between the present work and other relevant
contributions in the literature is discussed. In a final section, attention is devoted to a technique for
determining the temperature distribution which results when a line source of heat is embedded at the
centre of the oscillating cylinder,

NOMENCLATURE V., steady radial velocity at
a, radius of the cylinder; infinity;
ki, k,, conductivities of the cylinder Y, scaled distance co-ordinate
and fluid respectively; defined in equation (27);
U, typical velocity; x, similarity variable defined
Q. total flux of heat per unit in equation (50);
length from the cylinder de- T fluid temperature;
fined in equation (35); T.T.T, wall, ambient fluid and iso-
Pr, Prandtl number; = v/k; thermal core temperatures
M, represents the ratio ofato a respectively;
viscous length; = (wa?/v)*; T T,7,t1i,1, O, dimensionless temperatures;
R, streaming Reynolds num- G(¢), dimensionless temperature
ber; = €M? = U2 Jwv; on cylinder surface;
Nu, Nusselt number, X, X, functions defined in (74);
=Q/mk(T, -~ T); D, function occurring in equa-
r, 0, cylindrical polar co-ordin- tion (84);
ates as shown in Fig. (1); o), f(d), defined in (39);
Uy Ugs rgdial and azimuthal veloci- F(x), function associated with the
ties; dimensionless flux of heat
u® o, steady tangential and nor- across a station 6 = con-
mal velocity components de- stant in the thermal bound-
fined in equation (57); ary layer;
* Present address: Central Electricity Research Lab- Qo’ function occurring in €qua-
oratories, Kelvin Avenue, Leatherhead. Surrey, England. tion (80);
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function defined in equation
(51);

function associated with the
finite difference form of the
continuity equation, see (62);
functions occurring in equa-
tion (72);
coefficients
equation (99).

occurring  in

kinematic viscosity of the
fluid;

coefficient of viscosity of the
fluid:

thermal diffusivity of the
fluid;

typical time;

dimensionless stream func-
tions;

Stokes layer variables de-
fined in equation (6);

space variables, 8 defined in
Fig.1,¢p = 0 — 72,

&= 9/2;
boundary layer distance
co-ordinates
mesh lengths shown in Fig.
2:
distance co-ordinate at the
outer edge of a boundary
layer;
perturbation parameter;

=U_Jwa;
perturbation parameter;
= (€*Pr)"*:
perturbation parameter:
= {PrRs)™%;
displacement thickness de-
fined in equation (65);
shear stress defined in equa-
tion (66):
functions defined in equa-
tion (46) and (28);
constant defined in (39);

€, some prescribed tolerance:
b, function defined in equation
{98).

1. INTRODUCTION

THE PURPOSE of this paper is to examine the
problem of transport of heat associated with
acoustic streaming, induced by an oscillating
circular cylinder, in a systematic manner and
evaluate the status of existing theories. Attention
has already been focused upon this particular
problem, notably in the theoretical investiga-
tion and discussion on relevant experimental
contributions published by Richardson [1].
However, not all of the results obtained by
Richardson are correct. It is believed that the
analysis described here leads to a more satis-
factory understanding of the réle played by the
steady streaming velocity field in heat transfer
from an oscillating cylinder, in a fluid which is
otherwise at rest.

We choose a frame of reference in which the
cylinder of radius a is at rest and the fluid at
infinity is assumed to undergo transverse vibra-
tions. The fluid is assumed incompressible and
the flow laminar. The wall and ambient fluid
are maintained at different constant tempera-
tures in most of the cases considered here, and
we restrict ourselves to small temperature differ-
ences. By suitable choice of the fluid in which the
cylinder is immersed, and of the frequency of
oscillation, it is possible to obtain acoustic
wavelengths which are large or small compared
with the cylinder radius. Attention here is con-
fined to situations where the wavelength is large
compared with the radius.

When a cylinder of radius ¢ in a fluid of
kinematic viscosity v and thermal diffusivity x
undergoes transverse vibrations with speed
U_coswt four length scales are important.
These are the geometrical length g, the vibration
amplitude U _/w, the viscous length (v/w)* and
the analogous length (x/w)*. From these length
scales we can construct three independent
parameters €, M and Pr (see [2]), which charac-
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terize the motion and heat-transfer properties.
Thus € = U_/wa is the ratio of the vibration
amplitude to the radius a, M = (wa?/v)* repre-
sents the ratio of a to the viscous length and
Pr = v/k is a measure of the ratio of the viscous
and thermal diffusive lengths. We only concern
ourselves with situations where € < 1. It is well
established that if*M > 1 then the first order
harmonically fluctuating vorticity created at the
surface of the body, which is naturally present
due to the assumed oscillatory behaviour, is
confined to a thin boundary layer, or Stokes
layer as it is known, of thickness O(v/w)t.
Outside this layer a second order steady stream-
ing, with characteristic velocity O@U ), per-
sists. A Reynolds number associated with this
streaming is defined as (see [3]) Rs =¢*M?
= U? Jov. The parameter Rs plays a role ana-
logous to that of the conventional Reynolds
number for steady flow past a solid body. It has
been made clear by the work in reference [2]
that Rs is a more fundamental parameter in
these situations than M, and we adopt it as such.
With Rs > 1, the outer region, away from the
Stokes layer, in which the steady velocity is
adjusted to zero, is of boundary-layer character
with thickness O(Rs #q) and for Rs € 1 the
flow is Stokes-like and the adjustment takes
place over a much wider region. We mention
finally the dimensionless parameter k, /k,, where
k,, k, are the thermal conductivities of the
cylinder and fluid respectively, which appears
in the final section in association with a problem
of internal heat generation. These are all the
dimensionless parameters on which the subse-
quent theory is based.

All results which are obtained here are for
€ <1 and we suppose they are asymptotically
valid in the limit € — 0. We formulate a theory
for Rs, Pr = O(1) by which we mean hm Pr,
Rs = O(1). In the subsequent development of
the theory these latter parameters may take
large or small values which correspond to fur-
ther limit processes in the following sense.
If ¢, and €, are any two dimensionless para-
meters then, for example, the double-limit pro-
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cesse, — 0, with im(x) €, = O(1), followed by
€
€, — oo (we assume these limits apply to situa-
tions in which €, < 1, €, > 1) has the property
that lim €€} = Oforanya > O(this we assume
€10

applies to situations in which €,€; < 1). In our
development of the theory, all the analysis for
extreme values of the various parameters is to be
interpreted in this context of ordered limit pro-
cesses.

In Section 2 we formulate the general problem
for Rs = O(1), Pr = O(1) and seek a solution of
the energy equation, following a procedure used
to obtain the flow field given in [2] withe as a
perturbation parameter, in the form of two com-
plementary series. One series is associated with
the outer region, valid at a distance O(1) from
the cylinder, the other with the Stokes layer.
These series must match at each stage of the
expansion. Pertinent results associated with the
flow field are surmarized, for convenience,
from [2]. Following the general formulation
from which equations for the steady velocity
and temperature distribution in the outer region
are given, we examine limiting forms of the solu-
tions of these equations for Rs <1, Rs > 1
since closed form solutions for Rs = O(1) are
not available, and the full scale numerical calcu-
lation in this situation is beyond the limitations
of the available computing facility. For Rs < 1,
we examine in Section 3 the cases Pr = O(1),
for which we show that no steady solution can
exist in our unbounded region, and PrRs = 0(1)
with particular reference to the case PrRs > 1.
A feature which emerges from the analysis in
Sections 2 and 3 is that for Pr = O(1), or within
the above framework lim Pr = O(1), the Stokes

€0
layer is so thin that it acts as a pure conduction
region. The detailed flow structure of the Stokes
layer plays no part in the convective heat trans-
fer.

We show in Section 4 that for Prandtl num-
bers which are so large that Pr = O(e~?) the
thermal boundary layer is sufficiently thin for
convection within the Stokes layer to be im-
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portant. Accordingly we formulate a theory for
which lim Pre? = O(1),lim Rs = O(1). However,
€—=0 e—0

we have been unable to draw firm conclusions
about the heat-transfer characteristics in this
case, where the fluid flow responsible for con-
vection is a recirculating flow with closed
streamlines.

In Section 5, the other limiting case of
interest, Rs » 1, Pr = O(1) is discussed. An
accurate numerical method of solving the
momentum and energy equations employing
finite difference techniques, is described. This
method is supplemented by an approximate
momentum integral method which yields fairly
accurate results very quickly. The details of this
latter method are to be found in an Appendix
to this paper. In addition to the numerical
calculations, asymptotic solutions of the energy
equation are found in the cases Pr » 1, Pr < 1.

The rate of heat transfer from the cylinder
expressed in the form of a dimensionless quantity,
the Nusselt number Nu, is determined in all
cases and a critical comparison is made between
the results obtained here and those derived by
Richardson [1].

In the final section we employ the results
derived in Section §, for the steady streaming
when Rs » 1, to study a particular problem in
which the wall is no longer maintained at
constant temperature. In this problem the heat-
ing is initiated by a line source of heat at the
centre of the cylinder. We select this model
situation as an idealization for those problems
in which there is internal heat generation within
the cylinder. An internal heat conduction prob-
lem must then be solved simultaneously with
the external convective heat transfer problem.
An iterative scheme is devised for this mixed
problem which is capable of handling situations
for values of the parameter k,R; */k, = O(1).
This parameter arises in the condition of
continuity of heat flux across the cylinder
surface and will be small compared to unity
within the structure of our limit processes.
Results showing the heat-transfer characteristics
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and the isotherms within the cylinder are pre-
sented graphically.

2. THE GOVERNING EQUATIONS

For a circular cylinder which performs trans-
verse vibrations with speed U_coswt in a
fluid which is otherwise at rest, we choose
cylindrical polar co-ordinates fixed in the
cylinder, such that the radial distance is measured
from the centre of the cylinder and 6 =0
coincides with the axis of oscillation as in Fig. 1.

Uy COs wt

F16. 1. The co-ordinate system.

We make all the governing equations dimen-
sionless by using U as a typical velocity, ™!
as a typical time and q, the radius of the cylinder,
as a typical length. Thus the dimensionless
stream function ¥, from which the radial and
azimuthal velocity components are given by

10 bl
Ur = = ;—é‘gw Uo = 5"53 (l)
satisfies the equation,
0 o €0y, V) €
— S P e VY 2
=Vt e TRy @
The boundary conditions for (2) are
¥ o= —ai!’»ll- =0onr =1,
or (3)

Y ~ rsinfeasr— o,
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and the real part of any complex quantity is to
be understood. In these equations, € = U _/wa,
Rs = U? Jwv, 1 is the dimensionless time and the
operator V2 is given by

We shall be concerned entirely with the small
amplitude oscillations for which € < 1. The
most comprehensive description of the flow
field, which owes its origins to the work of
Stuart [3] and Longuet-Higgins [4] is to be
found in [2]. There, with € as a perturbation
parameter, a solution is developed for Rs = O(1),
by which we mean lim Rs = O(1). The motiva-

€=0

tion for this is that Rs is a Reynolds number
based on the induced steady streaming, see [3].
It is well known that a solution of (2) is not
uniformly valid, and in [2] two complementary
series solutions are presented, an outer solution
valid at a distance O(1) from the cylinder, and
an inner solution valid in a Stokes shear-wave
layer of thickness O(e/Rs ™ ?). The series solutions
“match” at each stage in the manner of Van
Dyke, [5]. For the details of the derivation of
these solutions reference may be made to [2];
here we present the principal results. Retaining
the notation of [2], the outer and inner solutions
may be written as

¥ =¥y, 0,7) + R%wm(r, 8,7)

+ ey (r,0) + ¥ (.6, 7)) + O, C)
€
V= q’oo(ﬂa 09 T) + ES; 'Pm(ﬂ, 61 T)
+ (¥ (1, 0) + P4 (1,6,7)} + 0, ()

where the Stokes layer variables for the inner
solutions are defined as

Rst Rs?*
‘P_e\/__i"(/’ n —“2-(?'—1)-

=€\/ (6)
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A characteristic feature of these flows is the
induced steady streaming Ofe), and in {4) and (5)
the time-independent part of O(e) has been
explicitly displayed with superscript (s). For a
circular cylinder, the terms displayed in (4) and
{5) take the form,

Yoo = sin B(r - %) e”,

.sinf
!/Iol = — \/2(1 - l)——reu,
3 =0,
Yoo = 2sin8 {n — 11 — i)(1 — e~ *im} el
™
Vo, =22sin0 {31 — )n—3(1 -1
(1 — e'““’")] - ';‘7!2 _ %(1 . i)’? e~ (i+im
— %l(l _ e—(1+i)n)} e“,
PW = 25in 20 ~1—;—(l + ije~(+in2
42
i e (L))
+— A+ V| 7 2it
2"° a2 } ©
PO =2sin20(2 -2y —1e -2
e""cosn — e "siny — ine "siny).
The equation, derived in [2], for Y/}, is
1 la(w(s) Vzll,(s)
Zyrye Wi ¥ Yo
Rs 40 r o6 o ®
together with the boundary conditions,
Y§ =ofr) as r-— oo,
¥ =0
N =1 (9
Oll/{ls:) ] onr
> =3 sin 20

We see from (8) that the steady streaming outside
the Stokes layer, represented by y/%), is governed
by the full equations for steady viscous flow at
Reynolds number Rs. We note from (9) that the
outer streaming is induced indirectly by the
streaming in the Stokes layer, which is itself
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a consequence of the action of Reynolds stresses.
It is shown in [2] that these stresses make no
direct contribution to the outer streaming.
We now investigate the role played by this
steady streaming velocity as a mechanism for
convecting heat from the circular cylinder.
With the streaming Reynolds number Rs
= 0(1) and the Prandtl number Pr = O(1)
where Pr = v/k, the energy equation may be
written in dimensionless form, with dissipative
effects ignored. as
oT €o, T) €

i — VZ’IZ
T + r o(r,6) PrRs

(10)

together with the boundary conditions,

T=1onr =1,
(11)
T=0asr - 0.

The boundary conditions on the dimensionless
temperature Tdefined as

T-T
T =, 12
1,-1, -

where T is the temperature, are based on the
assumption that the wall and ambient fluid are
maintained at constant temperatures 7., and T,
respectively. We discuss in a later section a
particular situation in which Tw is not uniform.
We restrict ourselves entirely to situations in
which the fractional temperature difference
|T, — T_|/T,_ is small compared with unity
so that the dependence of the density and
diffusivities upon temperature may be ignored,
and the Grashof number is so small that natural
convection effects may also be neglected.

As indicated earlier, we are concerned solely
with small amplitude oscillations. By analogy
with (4), we seek a perturbation solution of the
energy equation (10) in the form

T =T, + €T, + €T, + 0, (13)

where T, = T(r, 0, Rs, Pr, 7). Substituting (4) and
(13) into equation (10) and successively equating
coefficients of powers of € we find that
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or,
52 -0 (14)
0T, | 10W, 1)
R (1)
CT, 10, T)) 1 a,,. T,
ot v ar.h) Rs*r a(r,0)
1 a(x//‘f’o, To _ 1 2
r or.0)  PrRs VT, (1)

From (14) we deduce that T, has no time-de-
pendent part, which we may intuitively expect
from the assumed time-independent boundary
conditions. From (7) we see that ¥, and ¢,
vary harmonically with 1, and since T, is
independent of time we integrate (15) once to
give the form of T, as

T, = ¢,(r,0,Rs, Pr) + ¢,(r.0,Rs, Pr)sint. (17)

Using this result, we equate separately the time
dependent and time independent parts of equa-
tion (16) to yield as the equation for T
1oy, TY) 1
r r,0)  PrRs

V2TY. (18)

Thus the equation for 7%} is only recovered when
considering the O(e?) equation for T,. This
method of proceeding is typical for these
oscillatory flow situations, as for example in
[2] and [6]. We observe from equation (18)
that the steady streaming velocity, governed by
equation (8) plays a dominant rdle in determin-
ing the mean first order heat transfer. However,
as we have already noted, equation (18) is only
applicable in an outer region outside the Stokes
layer. Identifying temperatures in the Stokes
layer region by 7 (5.0, Rs, Pr,e.7) = T(r. 6, Rs,
Pr.e.7) and expanding  in an analogous
manner to (13), it is easily shown that 7 = 0
and that the governing equation for J4 is
simply

(19)
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The appropriate boundary condition is, from
(11), 79 = 1 onn = 0, and we require that the
solution of (19) matches with the outer solution
of (18). The solution of (19) correct to Ofe) is
simply 7% = 1, and we note that, to first order,
the Stokes layer acts as a purely conductive
region. This result is not entirely unexpected
since, for Pr = O(1), the thermal boundary
layer is very thick compared to the Stokes layer.
Under these circumstances we may expect the
temperature changes across the latter to be
negligible. Of course, as the Prandtl number
increases the thermal boundary layer thickness
decreases and in a later section we show that for
Prandtl numbers for which €2Pr = O(1), con-
vective effects within the Stokes layer do become
important.

Since, for Rs = O(1), we are unable to solve
equations (8) and (18) in closed form, we con-
sider limiting forms of the solutions of (8) and
(18) when Rs <€ 1 and Rs » 1.

3. SOLUTIONS FOR Rs <1

We see from (8) that Rs <€ 1is both a necessary
and sufficient condition for the outer steady
flow to be Stokes-like; the governing equation
for %), for this case is the biharmonic equation,

vy, =0, (20)
the solution of which must satisfy the boundary
conditions (9). We note from the boundary
conditions (9) that the outer steady flow has
stagnation points of attachment at § = + z/2.
For a direct comparison of the results obtained
here with those of other authors, see for example
[1], we choose as origin the stagnation point
8 = /2, and write ¢ = 6 — n/2. The solution of
(20) which satisfies the boundary conditions (9)
is,

Y&l = — 2(r™% — 1)sin2¢.

We note that (21} represents a uniformly valid
solution of (20) together with (9).

We now seek solutions of the steady tempera-
ture equation (18) when Rs <€ 1.

21
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Case(i): Rs < 1,Pr = O(1)

With Rs < 1 and Pr = O(1) we see from the
steady temperature equation (18) that diffusive
effects, as well as being the dominant mode of
transport in the Stokes layer, are of primary
importance in the outer region. As a first
approximation to T we have to solve

V2T® =0, 22)
T® =lonr =1,
TS =0asr—+oo.} 23)

The condition at infinity follows immediately
from (11) and that at r = 1 is the matching
condition with the inner conduction solution
of (19). There are no solutions of (22) which
satisfy both of the conditions (23). Consequently
we relax the condition at infinity on the assump-
tion that the necessary adjustment can take place
in an outer region, in which there is a balance
between convective and diffusive processes. This
procedure is typical for steady low Reynolds
number flow past a finite body. The solution of
{22) which satisfies the boundary condition at
r=1is T$ =1 + Blogr, where B is a con-
stant to be determined by matching with the
solution appropriate to the outer region. We
assume that variables appropriate to this outer
region are, by analogy with the classical Stokes—
Oséen flow, of the form

p =(PrRsy'r,n>0, tp,¢,7)=T(,0,1), 24

where, by virtue of (21), ¢} remains O(1).
Using the result (21), we express equation (18)
in terms of the outer “Oséen-like” variables (24)
to give as the governing equation for %9,

3 ot 3 o
P ‘R 2n+1 ] _ 7 bt — 0
{PrRs) [294 sin 2¢ 2 + 303 cos 2¢ ap}
3 o9
- (PrRs)—2; cos 2¢Fp‘l- = Va9,  (25)

where

2 _ iz. + l_a_ 4 1 52

>80 pdp  pPog*
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We see from (25) that for no positive value of n
can we achieve the necessary balance between
the convective and conductive terms. We there-
fore conclude that no steady solutions for an
unbounded medium exist for Pr = O(1) and
Rs < 1. Physically, the convection velocities
in the proposed outer region are too weak to
ever dominate diffusion. Only for the larger
Prandtl numbers such that PrRs = O(1) do we
see that diffusive effects will become relatively
less important, so that convective effects are not
dominated by them everywhere. As a special
case we now formulate a theory for situations
where PrRs » 1, in which we show that con-
vection, which is primarily due to the “slip-
velocity” defined in (9), plays an active role.

Case(ii): Rs € 1,PrRs » 1

We see from (18) that as a first approximation
to T% we may neglect the right hand side, and
for the resulting equation to satisfy the condition
at infinity we require that T = 0. Consequently
we cannot match this solution with the solution
F® =1 for the Stokes layer, and so with
PrRs > 1 the outer thermal region itself assumes
a boundary-layer character. Substituting (21)
into (18) and applying the usual boundary-layer
arguments, it is easily shown that the thermal
boundary layer has thickness O[a(PrRs)™*].
We observe that the ratio of the Stokes layer
thickness to this thermal boundary layer thick-
ness is

€/Rs? s
W=€Pr <<1,

(26)
and so, although the thermal boundary layer
is thin, it is still much thicker than the Stokes
layer which remains essentially a conduction
region. We introduce variables appropriate to
the thermal boundary layer, within which the
temperature is O(1) and the stream function
0(R2), where Q = (PrRs)"* < 1, as

tr, 1) = T(r, 1), Y =Q '(r — 1),
(IS) — Q‘/;(ls)

0 [0

@n
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The inner expansion of the outer stream func-
tion y¢),, given by equation (21), is, when written
in terms of the inner variables,
JO) =7, + Qx, + 0(Q?), (28)
with
7, =3Ysin2¢,7, = 2Y?sin 2¢.
We accordingly seek a perturbation solution of

equation (18), expressed in terms of the thermal
boundary co-ordinates (27), in the form

18 =150 + Q) + 0(Q%), (29)

where &) = t$)(Y, ¢). Substituting (28) and (29)
into equation (18) and equating coefficients of
powers of ©, we have as the equations for £, and
t(s)
01°

~ (s) 24(s
a(xl’tgo) . ¢ toz)

Y. 0) Iz 0, (30)
A B R R
aY. ¢) aY: Ay, ¢) aY. ¢)
{s)

together with the boundary conditions,

(s) __
to; =0

1 = Li=0 on
000 =1

The boundary conditions (32) and (33) ensure
that the solution matches both with the trivial
solution T¢' =0, for the region outside the
thermal boundary layer, and the Stokes layer
solution %) = 1, respectively. It can be shown
following a suitable transformation, (see [6]),
that equation (30) reduces to the classical one-
dimensional heat conduction equation with
solution

i=0,1 as Y- x, (32)

Y =0 (33)

9 =1 —erf{)¥cosop Y} (34)
Before examining equation (31) for the higher
order term ¢, we first determine the rate of
heat transfer from the cylinder using the first
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order solution (34). The total heat flux per unit
length from the cylinder is

2n

or
Q T J‘ k(‘é—;)7=aa d(b’
0

where k is the conductivity of the fluid. The
corresponding Nusselt number, based on the
cylinder diameter and defined as

(35)

-2
Nu= oy (36)
is given by
2z 3 -
1 T
Nu = ’*‘;J’(“a?)r=1d(§5 (3?)
)

From the solution (34), the corresponding
Nusselt number, using (27), 29 and (37) is

96

Nu = (__)* (Pr Rs)t. (38)

“3

This result has also been obtained by Richard-
son who uses an approximate method appropri-
ate for small Prandtl numbers. The motivation
for this approach is that the thermal boundary
layer, although very thin, is much thicker than
the Stokes layer. However the formal procedure
outlined above is more satisfactory insofar as it
provides, unlike the approximate method of
Richardson, a firm basis for calculating higher
order terms in the Nusselt number (37). We
note that for Rs = O(1) and PrRs > 1, the argu-
ments used above will again yield, to first order,
the result (38) since under these circumstances
the convection velocity in the thin thermal
boundary layer is, to first order, simply the slip
velocity in (9). Perturbations to (38) will of
course depend on the detailed structure of the
outer streaming which in turn depends upon
Rs. For the case Rs <€ | under consideration,
this structure is manifested in the thermal
boundary layer by the successive terms of (28).
Before considering higher order terms we note
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that aithough PrRs > 1 is a necessary condition
for (38) to hold it is not, as we shall see in Section
4, a sufficient condition.

We now return to the correction of the result
{(38), which we calculate from the higher order
term ¢} governed by equation (31). The solution
of (31) may be expressed as

18 = b(¢)cosp[—1 + erf {xcos $Y}
+exp {—a?Y? cos? ¢}] + f(¢p)cos ¢ Y?

xexp{—a?¥Y?cos? ¢},  (39)
where
2 =1,
) = 2 [ —cot  + cosec 6],
and

f(@) = j(6/n)?
x [2cosec? ¢ + 1 — 2¢ cot ¢ cosec? ¢].

This completes the solution (29) to O(2). We
use this result to readily show that

3 ;2
Nu = @2) (PrRs)t {1 - (%) (PrRs)™*

+O[(PrRs)"']}.  (40)

This constitutes the principal result for this case.

Unlike the correction of. relative order
{PrRs)™ %, to the Nusselt number shown in (40),
Richardson obtains a correction O(ePr?) by a
method which is not a systematic development
from his first approximation. Since, as we recall
from Section 1, the theory developed here, and
implicitly in [1], is basically one in which
Pr = O(1) and Rs = O(1), Richardson’s correc-
tion is smaller than that shown in (40). The
neglect of these more important terms by
Richardson is due entirely to the fact that he
ignores the influence of the structure of the
outer streaming upon convective heat transfer
in the thermal boundary layer.

We again recall that although the thermal
boundary layer is very thin, it is much thicker
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than the Stokes layer which plays the réole of
a conduction layer. We anticipate that for
sufficiently large Prandtl numbers, convective
effects in the Stokes layer will become important.
We observe that equation (26) indicates that we
may expect that the thermal and Stokes layers
will have the same thickness if ePrt = O(1).
This leads naturally on to Section 4 where we

examine the case lim Rs = O(1). lime?Pr = O(1).
-0 -0

4. HEAT TRANSFER AT VERY LARGE PRANDTL
NUMBERS
Rs = 0(1), 2Pr = O(1)

For this case, as we have already anticipated,
the Stokes layer will no longer play its passive
conduction rdéle, and convective effects will
become important within it. Expressing the
energy equation (10) in terms of the inner Stokes
layer variables (6), then the governing equation
for the temperature 7 in the Stokes layer is

ar a7
o7 [ /o)
ot Rs* | 2@, 0)
e 9tT
= 2e*Pr) on?

+ 0(€d). (42)
We scek a perturbation solution of (42), with
€?Pr = 0(1), in the form

T =Ty +eT, +€T,+ 06, 43

where I, = 7 (1, 6, Rs, Pr, 7). Substituting (43)
and the expansion for ¥ given by (5), into equa-
tion (42), we equate coefficients of powers of e.
It can be shown, following a similar procedure
to that used in deriving equation (18), that the
leading term 7, is again time-independent and
satisfies the equation.

APS), 3T

a(n, ) on*

where the steady Stokes layer velocity, repre-
sented by YY), is given by (7). This important
equation shows that the thermal boundary
layer now possesses a full structure on the scale

of the Stokes layer.

T 1

" 2(e*Pr) (44)

B. J. DAVIDSON

As i1s well known, and can be deduced from
(7), the steady part of the tangential velocity in
the Stokes layer, which features in (44), under-
goes a change of sign. The direction of the tan-
gential velocity is such that at the edge of the
Stokes layer, fluid is carried over the cylinder
surface and out away from the cylinder along
the axis of oscillation. Fluid adjacent to the
cylinder surface within the Stokes layer is
flowing in the opposite direction and continuity
within the boundary layer is maintained by a
streamline pattern in the form of closed loops.

A numerical investigation of equation (44)
was attempted using a standard marching pro-
cedure, which we describe in Section 4, for
€2Pr = O(1). This method failed and its failure
may be attributed to the reversed flow described
above. The difficulty is analogous to that
encountered when, for example, a numerical
integration is attempted to advance a two-
dimensional steady boundary-layer calculation
past a regular separation point, and into the
region of reversed flow beyond. Any numerical
scheme for integrating (44) with €*Pr = O(1)
must presumably be based upon a boundary
value method similar to those employed for
elliptic equations. We do not pursue this point
further here but consider below the special case
€*Pr » 1, in which the thermal boundary layer
is now very thin, on the Stokes layer scale. and
within which the convective velocity is uni-
directional. A perturbation solution. as in
Section 3, is proposed. The first term of this has
been obtained by Richardson [1]. However, the
validity of the approach adopted as described
below is questioned on account of the closed
streamline nature of the Stokes layer.

Rs = O(1),€Pr > 1

It can be shown that the thermal boundary
layer thickness in this case is O([Pre*] *a).
Accordingly we introduce thermal boundary-
layer co-ordinates p, t where, with @ = (€ZPr)™ %,

up.0) = 7 n.9). (45)

Note that since the velocity in the Stokes layer

p=a'n,
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close to the wall is in the direction of 8 increasing
we have, in this case, reverted to the original
variable 6. The inner expansion of the stream
function ¥¢) expressed in terms of the inner
variables p, 0 is

'I’(f()) = cT)le + 653}(2 + O(®%), (46)
where
sin 260 , sin 20
Xl = —2—_/) s Xz = 3 .

Thus in the thermal boundary layer we seek a
perturbation solution of equation (44) in the
form

ty = tyo + By, + @1y, + O@).  (47)

Substituting (46) and (47) into equation (44) and
equating coefficients of powers of @ gives as the
equations for t,, and ¢t,,,

0xystos) 1 O ton
ap,0) 2 9p?
(x> too)
= — pL£22 000 n=0,1 48
30,0) “)
The boundary conditions for (48) are
t, =0asp—- oo, n=01,
On p (49)
t, = ! n=0 np =0
=0 n=1 P77

The solution of (48) for t,, which satisfies (49),
obtained in terms of the similarity variable

x = p/g(6), (50)
is (see [7]),
1T o
toolX) = mj e ds, (51)
3

where
0
g%(6) = 2sin %20 | sin? 2s ds.
0

The expression for t,,, which represents the
next term of the solution in our apparently
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self-consistent procedure, has been derived in
closed form, but it is not presented here. From
the two term solution (47) we calculate the
Nusselt number (37), using (45), as

Nu = e~ 'Rs*(Pre?)?
x {130 — 030 (€2Pr)™* + O[(€2Pr)"*]}. (52)

As we have already mentioned, Richardson
has obtained, in a slightly different but equivalent
form, the solution (51) and hence the first term
of the expression (52). He shows that by the
introduction of a suitable numerical factor, the
first term of (52) remains valid, to within a
multiplicative constant, even in those cases where
the Stokes layer thickness is not small compared
to the diameter of the cylinder. As before his
approach does not permit a systematic develop-
ment of the solution for the temperature, as in
(47). However we now question the relevance of
the model which we have chosen to describe the
temperature field, as represented by equations
(45) and (47).

Consider the dimensionless flux of heat, Q,
across a station 6 = constant in the thermal
boundary layer. This is given by

(s)
0- f‘”’w:dp,

=a’32[j sin? 25 ds]* F,
0

(53)

where, to first order, F = 3)* | xt,,(x)dx # 0.
1]

The result (53) implies that although Q = Oat the
axis of oscillation 8 = 0, it is infinite at 6§ = n/2
where the recirculating region for this first
quadrant terminates. For steady flow past a
finite body all this heat will be swept downstream.
However in the present case we may expect the
heat to be swept back along the recirculating
streamlines with some, but not all, of the heat
being carried away along the axis of oscillation.
We may infer from the work of Grimshaw [8]
that for this fluid of very small diffusivity, the
recirculating Stokes layer region is at uniform
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temperature T #T o O(; and that this “iso-
thermal core” region is separated from the wall
and outer regions by a thin boundary layer in
which the heat flux is O(?). This model then
requires the heat flux at § = 0 to be non-zero
and O(®?). This result exposes the weakness of
our arguments leading up to (52).

We do not pursue this theoretically interesting
situation any further. In the next section we
consider the heat transfer characteristics when
the streaming Reynolds number Rs > 1 with
Pr = O(1). We note a priori that the Stokes
layer is once more reduced to its purely con-
ductive role. The only work which has been
carried out for this case, in [1], is of a highly
speculative nature.

5. SOLUTIONS FOR Rs > 1

For large values of the streaming Reynolds
number, the outer steady flow governed by
equation (8) assumes a boundary-layer charac-
ter, the Stokes layer being then embedded
within this outer boundary layer. From order of
magnitude arguments, (see [3]), it can be shown
that the thickness of the outer boundary layer is
O(aRs™?%), or a factor O(e ') times thicker than
the Stokes layer. It is within this outer boundary
layerthat the steady tangential component of
velocity finally decays to zero. Accordingly, for
this outer boundary layer we introduce scaled
variables \, 7 where

Rs?

ﬁZT(V—l)

(S) = S-%lp(s) (54)
and for convenience, we define a space variable &
as ¢ = ¢/2. Consequently because of the sym-
metry associated with this problem, we only
concern ourselves with the region 0 < ¢ < n/4.
Expressing equation (8) in terms of the boundary
layer co-ordinates (54) we see that the equation
to be satisfied by %) is

alp(ls) 62%@]
on 0éon o€
together with, from (9),

a,p(S) aZJ(S) 53!p(s}

67.1_2 - a 3 (55)

B. J. DAVIDSON

a (s}
ﬁﬁm =0as ij— %
t (56)
~ 3sin4éq as 7 - 0.
(t.n+1) L+, n+1)
(. (C+1,n)
n Ay
(¢,n-1) W+i,n=1)
A€
4

Fi1G. 2. The mesh with pivotal points used in the numerical
integrations, Rs » 1.

The condition at infinity ensures that the steady
tangential velocity component dies away to
zero and the condition at 7 = 0 is to be inter-
preted as the matching condition with the Stokes
layer solution (7).

A limited study of the mechanics of this outer
boundary layer has been carried out by Stuart
[3] and Riley [9]. Using different methods, both
these authors present results from solutions of
equation (55), in the form of series about the
stagnation point ¢ = 0 of the outer steady flow.
However the solution obtained by the above
authors does not, for the number of terms
retained in the series, satisfactorily describe the
flow over the whole region 0 < ¢ < n/4.

In this paper we describe briefly an accurate
numerical method of solving equation (55),
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subject to the boundary conditions (56). Here
we only outline the numerical procedure used
and refer the interested reader to [10] where
full details of the computation scheme may be
found.

For the numerical method which was em-
ployed it is convenient to work with the steady
tangential and normal velocity components,
related to /') as

(s) o)
a 10 U(s) — al[/

() — =
“ 7 o

(57)

respectively. Thus, integrating (55) once with
respect to 7§ we have, together with the con-
tinuity equation,

ou ou® 0%
u(S)__ U(S)_a__ — _6_2_
0 fl ]
¢ 1 (58)
ou® o 0
ot T T
together with, from (56),
o = 3s5in4é, v =0ati=0,
u ¢ ] } (59)
w9 =0 as i - 0.

We shall also require #* =0 at ¢ = 0. The
problem of solving numerically the coupled set
of non-linear partial differential equations (58)
is reduced, using an implicit finite difference
scheme, to a simple marching procedure. A
double suffix notation is used as shown in
Fig. 2. With /=1 at ¢ =0 and n =1 at
fi = 0, then 4, _ is the value of #” at the pivotal
point (I, n), dlstant (I — DAE from & =0 and
(n — 1)An from # = 0. The computation pro-
cedure enables us to evaluate  at (I + 1,n + 1)
from a finite difference form of (58) in terms of
the values at the other five grid points. The deri-
vatives in the differential equations are replaced
by first order central differences and quantities
are evaluated at [(I + 1)A¢, nAif]. For example,
the derivatives 0u®/0¢ and 8%u'/0i? in (58) are
replaced by
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ou®
<—¢:3_f—> = (u(S)H 1,n u(S)l,n)/Aé’
i+4.n (60)

02ut
(‘g-?) = (#,,, ~ 24, + i,_, /A",
t+4.n

where @, = 3", , + u*,,, ). The non-linear
term u<s>au“>/ac is quas11mearlzed so that only
linear equations need be solved in each cycle of
an iterative procedure which is used to solve
the non-linear equations at each value of ¢, Thus,

if [u®,,, ,]? is the approximation used for
u,, ., at the jth cycle of the iteration, then the
approximation used for [u®(0u9/82)],,, . at
the (j + 1)th cycle is
) G+1)
(%),
aé 1+4,n
=2[u(s)l+Ln](j)[u(mlﬂ.n](jfl) ‘
—[u, 190w [’"]u). 6
2A¢

The values of »*, ., which are required in
the momentum equation, are obtained by
writing the continuity equation in finite dif-
ference form centred upon the mid-point of
the mesh [(I + })A, (n + HA7]. Thus

o + Glu, AL, A7),  (62)

where G involves the values of the current
iterate of u at the mesh points, and v, , | =0
by (59). Substitution of the difference approxi-
mations into the momentum equation displayed
in (58), using (61) and (62) yields the following
set of linear equations for the jth iterate to
u®,,  , at the station & = IA¢,

a, [u(s)w 1.n+2](j) +b, [u(s)w 1.n+ 1](”
+e, [, 9 =4, 63)

where n=1,...(N — 1). The value of N is
chosen so that #j_ = NA# adequately represents
the “outer edge” of the boundary layer. In (63)
the coefficients a,, b,, ¢, and d, depend upon
the known quantities A#, A, the previous
iterate [#®¥]Y~" at the mesh points, and
v, .. calculated from (62). Thus, since from

L+4n+1 = l+-§n
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(59) we have u*¥ .., =0, 4% | =3sin
(4IAE), the equations (63) represent N — 1
equations for the N — 1 values of the jth iterate
[ ]9 [, 4]9. This set of simul-
taneous equation (63) may be readily solved for
[9]9 at the mesh points (I + 1,n), n = 1....
N — 1 by triangular resolution and back sub-
stitution. The iterations through (62) and (63)
were terminated when the sum of the absolute
values of the differences of the quantities
u'¥, ., , between successive iterations did not
exceed some prescribed tolerance € and the
values so obtained were deemed to represent
the solution at that station. To advance the
solution a further step A¢ we require starting
values for the iterative scheme described above.
For each value of &, except ¢ = 0, the iteration
was started by taking [« _, " =u® | .
At the stagnation point ¢ = 0 the solution is
simply 4 = 0. To check the accuracy of the
solution obtained, various values of A, A, N
and € were used. By employing standard extra-
polation formulae a solution accurate to five
decimal places has been obtained.

The above finite difference scheme for the
non-linear differential equations (58) consumes
relatively large amounts of computer time. A
complementary method based upon momentum
integral techniques has been devised, which
reduces the problem described above to the
integration of a system of ordinary differential
equations. Integrating the momentum equation
in (58) from 7 = 0 to #§ = = gives

d [ o aum)
— (s) dii = — .
dé J‘ 1 < ai’_ n=0

0

(64)

Profiles for u*® of exponential type were intro-
duced in (64) and further details of the develop-
ment of the method may be found in the
Appendix to this paper.

An overall picture of the flow field may be
obtained from Figs. 3-5. Figure 3 shows profiles
of the velocity component ' at various stations
around the cylinder. Figure 4 shows the dis-

B. J. DAVIDSON

placement thickness, defined in our problem as

009 __ 1 Ju‘s‘dﬁ. (65)
(4]

7

{2aRs™ %~ 3sin4¢

Included in Fig. 4, along with the value of §,
obtained from the finite series difference solu-
tion, are values calculated from the series
solutions of Stuart [3] and Riley [9], and from
the approximate momentum integral method.

a0f

30

3}

20

$=90°

P=70°

=60

$=50°

| |
1o 20 30

U(s'/

FiG. 3. Transverse velocity profiles associated with the
steady streaming for Rs > 1.

The limitations of the former method and
effectiveness of the latter are revealed. A simiiar
comparison is made for the shear stress at the
inner edge of the outer boundary layer. Thus if
T, 1s the shear stress,

Ty _ ou®
j,uUsz* S\ )iy
| 4a

(66)

where u is the coefficient of viscosity, is shown in
Fig. 5. An interesting feature of this flow, postu-
lated in [3] and [9], is that 4 is non-zero at the
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axis of oscillation. From the symmetry of the
problem under consideration we shall, at the
axis, have a collision of boundary layers,
originating from two quadrants, and fluid will
be ejected along the axis in the form of a jet.

8,/(2aRs™1/2)

/8 n/4

F1G. 4. The displacement thickness obtained from the finite
difference, —; series, —+—; and momentum integral,
— —, solutions for Rs > 1.

A theoretical and experimental study of these jet-
like flows, in a variety of axi-symmetric situa-
tions will be the subject of a subsequent paper
[13]. The importance of this flow structure from
the present point of view is that heat which is
carried over the surface of the cylinder will be
swept away along the axis of oscillation, thus
avoiding the difficulties encountered in the
previous section.

We now employ the results derived above for
the steady streaming to study the transfer of
heat from the cylinder, maintained at uniform
temperature, when Rs is large.
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Rs > 1, Pr = 0(1)
We identify temperatures in the outer velocity
boundary layer by

i, ¢ 1) = (67)
where we note, from equation (54), that #j =
Rs*(r — 1)/2. Expressing equation (18) in terms
of the boundary-layer co-ordinates (54) and (67)
we find that the equation to be satisfied byz is

T(r’ 0’ r)’

LK) L g )
oM. &  Pr opt’
together with the boundary conditions,
i9=1on 7 =0,
° (69)

i9 =0 as - oo,

3
N
o
3

N

J

N
€| o
<+ .
3 20
A
~
© i
R
-6 0| \ /
_gol

F1G. 5. The shear stress at the inner edge of the outer velocity
boundary layer from the finite difference, ——; series,
— -—; and momentum integral, — —, solutions for Rs > 1.

and a suitable condition on ¢ = 0. We note
again that the condition on # = 0 ensures that
the solution matches with that in the purely
conductive Stokes layer.

a!p(s) o (s)

With—22 = 4@ and - 10 = _

b
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calculations for which have been carried out as
described above, equation (68) lends itself
readily to the finite difference scheme which was
used to solve the momentum equation. As before
derivatives are replaced by first order central
differences. The resulting difference equations
can then be expressed in an analogous form to
{63}and are again solved by triangular resolution
and back substitution. The boundary conditions
for the resulting difference equations are (69).
The initial condition which is used to start the
solution at & = 0 is determined as follows. At
=0, =0and V" is given by
v = = 2/31 —exp (—2/37).  (70)

The solution of equation (68) for J'/57 at the
stagnation point & = 0 is then found to be
oy -2/3pr

& M(L,1 + Pr.Pr)

x exp { — Pr{2{/37 + exp(—2/37) — 1]}, (7T1)

where M is a confluent hypergeometric function,
{see [11]). Equation (71) may be solved for the
initial temperature distribution using a simple
quadrature. Since the energy equation (68) is
linear, the time taken to solve the equation over
the entire field of integration is only a fraction of
the time needcd for the evaluation of the non-
linear velocity equations (58). Thus with # and
#** determined, this technique provides a rapid
and accurate method of calculating heat-transfer
rates over a wide range of Prandtl numbers.

A simple approximate method has been
devised. and used in conjunction with that
already described in the Appendix for the
momentum equation. It is based on the equation

w
AFisy
d O i = — i_ oty
—— | H t() o= = N
s Pri\eq Ji.o
a

obtained by integrating (68} with respect to 7.
Further details of the method are to be found in
the Appendix. It is an efficient and accurate
method over only a limited range of Prandtl
number of O{1).

B. J. DAVIDSON

40}~

= 300

{s)

Bf

Pr=1-Q

F16. 6. The local heat transfer for Pr <= 0-72,1-0, 50 from the
finite difference solution together with the local heat
transfer for Pr = (0. ~- — derived from the momentum

integral solution for Rs > 1.

oz o4 6 o8 (0
)

F1¢. 7. Temperature profiles for Pr - 0. Rs - L



HEAT TRANSFER FROM A VIBRATING CIRCULAR CYLINDER

In Fig. 6 we show the behaviour of the local
heat transfer as a function of ¢ for Pr = 0-72,
1 and 5, based on the finite difference calcula-
tions. Included in Fig. 6 is the local heat transfer
for Pr = 1-0 calculated from the approximate
method given in the Appendix. Figure 7 shows
profiles of the temperature iy at various
stations around the cylinder for Pr = 1-0 ob-
tained from the finite difference method. Calcu-
lations have been carried out using the finite
difference technique for the range of Prandtl
numbers, 0-2 < Pr < 10. Outside this range the
method becomes less effective due to the disparity
in thickness between the thermal and velocity
boundary layers. Consequently we supplement
these calculations with asymptotic analyses,
valid for large and small Prandtl numbers
respectively.

Rs> 1,Pr>» 1

When Pr > 1, the thermal boundary layer
will again be so thin, relative to the outer
streaming boundary layer, that we may antici-
pate the convection velocity within the thermal
boundary layer to be, to a first approximation,
simply the slip velocity in (59). We show that
this is indeed the case and the result (38) for the
Nusselt number obtained in Section 2 for
Rs € 1, PrRs » 1, is recovered. Perturbations
to the result (38), which depend upon the detailed
structure of the outer streaming, will of course
differ here from those calculated in Section 3.

As 77 — 0 we note that

W~ [ O + O + 0GP, (72)

where, from (56), f(£) = 3sin4¢ and f,(&) is
numerically evaluated from the velocity gradient
at 7 = 0 shown in Fig. 5. Applying the usual
boundary-layer arguments we see that the
convection and conduction terms in (68) are
comparable for Pr > 1 if we set

p=Priy, o) = Prty\, (73)
and

to(p, ) = 1y(#, &).
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The inner expansion of the outer stream function
) expressed in terms of the “inner” variables
(73) is, from (72),

¥ = X, + PriiX, + OPrY), (74)

where

X, =3sindfp, X, = /(&0

Accordingly we seek a perturbation solution of
(68) expressed in terms of the variables (73), for
Pr > 1, of the form

19 =10 + Pro48) + o(PrY). (75)

Substituting (74) and (75) into equation (68) and
equating coefficients of powers of Pr~*, we have

i #s) §s
as the equations for &) and i),

#(5) O%1) $(s)
AX,,18) tg,,= _ Xy too)’ (n=01)
ap, &)  op a(p, &)
(76)
together with the boundary conditions
1 n=90
# =
ton {0 w1 onm 0
(77

B =0as -0, n=0,1,

and a suitable initial condition at ¢ = 0 derived
as that for Pr = O(1) in equation (71). We see
that the form of equation (76) for £§), is analogous
to that of (30), from which we deduce the corres-
ponding result (38) for the Nusselt number. The
solution of equation (76) for #{), has been
derived numerically, using the finite difference
scheme described above. The Nusselt number
calculated from the two term solution (75),
using (54) and (73), is

Nu = Rs*Pr#
96\* -% -1
X =) - 026 Pr=* + O(Pr ). (78)

We see that the correction term in (78) for
Rs > 1, Pr > 1 is indeed different in nature to
the corresponding result (40) found in Section 3,
which is valid when Rs <.1 but with PrRs > 1.
We attribute this to deviations of the velocity
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field from the Stokesian formula (21) when Rs
is large.

Rs>1,Pr< 1

For very small Prandtl numbers, the thermal
boundary layer will be large in thickness com-
pared with the outer velocity boundary layer
and the convection—conduction balance will be
found in a region where the tangential steady
velocity is effectively zero. We show that in this
case, in contrast to the case Rs< 1 Pr< 1
studied in Section 3 where the convection
velocities were shown to be too weak to ever
counteract diffusion, that the entrainment velo-
city, when Rs > 1, eventually dominates the
outward diffusion.

As a first approximation to £ we solve, from
(68) with Pr < 1,

o _
o

i9 =1 on =0,

(79)
i =0 as fj - o0,
together with an initial condition which may be

derived from (71). The solution of (79) which
satisfies the condition on #§ = O is

) = 1 + Q. (80)

We see that we cannot satisfy the infinity condi-
tion in (79). We thus relax the infinity condition
and anticipate that Q (£) will be determined by
matching this solution with a solution appro-
priate to an outer region in which there is a
balance between convective and diffusive terms
in (68). The scale of this outer region, where

® = 0O(1) and # = O(1), in which convective
and diffusive effects are comparable, is O(Pr~1).
Consequently we set

fi = Pry,

o, &) = i, &), (81)
and @ satisfies
2
0% v 00 0, 82)

R
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where

v -— () <o
* B 65 '7=10<

is shown in Fig. 8. It is interesting to note that
the outer velocity boundary layer under dis-
cussion in this section exists only by virtue of the
fact that ¥_ <O for all ¢ This result was
established by a simple argument in [9] and is

35
30—
_Vm

25—

20—

15 L o
/8 /4

3

F16. 8. The radial velocity associated with the steady stream-
ing, at the edge of the outer velocity boundary layer, Rs > I.

conclusively demonstrated here. Before con-
tinuing our study of the heat transfer character-
istics for Pr < 1, we note that the outer expan-
sion of the stream function is given by ¢, = f(£)
plus exponentially small terms. This means that
(82) is the appropriate equation to all orders in
the outer region.

The solution of (82) must match with the
inner solution (80) and satisfy

@ =0asf — 0. (83)
The solution of (82) which satisfies (83) is
© = Dexp{V_f}. (84)
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D is a constant to be determined by matching
with the inner solution (80). The inner expansion
of @ expressed in terms of the inner variables
i,7is

V2
i© ~ D{1 + Pri, 7 + Prz—i‘ﬂﬁz + O(Pr3)}.

(85)

Interpreting (85) as the outer boundary condi-
tion for # we expand the inner solution as

B =1, + Priy, + Priy, + O(Pr),  (86)

with the expansion of the outer solution now
taking the form

D =D, + PrD, + Pr’D, + O(Pr3),

since (82) is appropriate to all orders. Matching
the solutions (80) and (84) to O(1) gives g, = 0,
D, =1 and so £,, = 1. With this unstructured
form for i, i, also satisfies (79) but with
f,, =0 on # =0, and so matching to O(Pr)
gives D, =0 and i, = V_#. Thus

£ =1 + Prv_ij + O(Pr?). (87)

The equation for {,,, found by substituting (86)
into equation (68) and equating coefficients of
Pr?is

05+
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(5) (s 2
a'p_w%ﬁ _ a'pm vV = 4 fgz. (88)

on  of o » on
Since we are primarily concerned with the

behaviour of (0%, ,/07), _ ,, We integrate equation
(88) once with respect tofj from 7 = 0to 7 = oo,
to give

W), [l |
Doz} _y ||p+Polgz— v
<6r] i=0 wo 0 1 J

o

an
In deriving equation (89) we have used the
condition

qdi. (89)

oz 12 asii o, 50)
which ensures that f,, matches with the outer
solution (84). We numerically evaluate the
integrals in (89) using the computed results
obtained earlier for ¥ = oy, /7 and v =
— oy%)/0¢. The resulting two term Nusselt
number, obtained from the first three terms of
(86) using equations (37), (54) and (81) is

N
¥ 291 Pr — 551 P + O(PP).
Rst

01

L |

F1G. 9. The computed Nusselt number,

Pr

[Kle] 15

, together with the asymptotic solutions (78),

—-—;and (79), ——, for Pr > 1. Pr < 1 respectively for Rs » 1.
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The computed Nusselt number together with
the asymptotic solutions (78) and (91) for Pr > 1
and Pr < 1 respectively are plotted in Fig. 9 as
a function of Pr. It can be seen that the computed
solution is consistent with the asymptotic
solutions. We note in particular the usefulness
of (78) which agrees with the finite difference
calculations to within less than 1 per cent for
Pr > 75.

Previous to the work reported here, the only
estimate that has been made (see [1]) for the
local heat transfer when Rs > 1. is that near the
stagnation point given by equation (71). Taking
this local result (71) for the heat transfer and
assuming that the wall temperature gradient
does not deviate far from the cos ¢-dependence,
which we have shown holds, to first order only,
for Pr » 1, Richardson [1] attempts to obtain
an upper limit for the Nusselt number for Rs » 1.
The Nusselt numbers based on Richardsons’
calculation for Pr = 072 falls below the value
calculated here by about 10 per cent. His result
in fact yields smaller values than those calculated
here for all Pr and consequently, in no sense,
can be accepted as an upper bound for Nu.

In the work described so far we have discussed
idealized situations, in which the vibrating
cylinder is maintained at a uniform temperature.
and assessed the heat transfer characteristics.
However in more realistic situations the surface
temperature may not be uniform and we may.
for example, be faced with a situation in which
heat is generated internally within the cylinder.
In the final section of this paper we discuss such
a case, although our model is again a fairly
simple one.

6. INTERNAL HEAT GENERATION PROBLEM

All previous sections have dealt with the
heat-transfer characteristics associated with a
uniformly heated surface. This situation could
be realised quite simply in practice by passing a
heated liquid through a thin walled tube. How-
ever other situations may arise in which heat is
generated internally, such as heat generation by
chemical reaction or radioactive decay. In
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these situations an internal heat-conduction
problem must then be solved simultaneously
with the external fluid flow problem. The sim-
plest possible situation of this kind, which we
discuss here, is one in which heat is produced
by a line source at r = 0, realisable for example
by passing an electric current through a wire,
which is embedded along the axis of the solid
cylinder. We assume that the total flow of heat
per unit length of the wire is uniform.

For this problem we take, as a particular
example, the external fluid flow to be that which
was discussed in Section 5 which is appropriate
for large streaming Reynolds numbers. The
temperature distribution in the external region
is thus governed by the boundary-layer equation
(68). and consequently a mixed parabolic (ex-
terior), elliptic (interior) problem is to be solved.
We now describe the method devised to calcu-
late the steady temperature distribution within
the cylinder under these circumstances. The
calculation outside the cylinder is closely related
to that described in Section 5.

Since we are no longer insisting that the wall
temperature 1, temains constant, we non-
dimensionalize temperatures in the equations
which arc to follow by setting

L

] Q/ 27[’(1 f

where @ is the total heat flux per unit length

from the wire, which we assume is constant. and

k, is the thermal conductivity of the solid cylin-

der. We identify the steady part, with which we

are concerned, of the dimensionless temperature

within the cylinder by T. Then, since T, must

satisfy Laplace’s equation, T{r, @) for this two-
dimensional problem is a solution of

T, 10T, 1 T,

ort rar  r?ae¢?
For a line source of heat at the origin r = 0, the
boundary condition which must be satisfied by
Tis T

r—a-rlx—lonr:().

(92)

= 0, (93)

94)
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We recall that the governing energy equation
in the external region is given by (68) where
i = Rs*(r — 1)/2, together with a boundary
condition

9%)

and a condition at ¢ = 0 derived from (71). If
k, is the thermal conductivity of the fluid, then
the boundary conditions which we apply at the
change of medium r = 1, at which there is com-
plete thermal contact, are

T(r, ¢) = £5(7, &),
dT, k,Rs *oty
Yor 2 o
where the latter boundary condition ensures
that the heat flux is continuous over the surface
of contact. The problem posed by (68) and equa-
tions (93)496) is now well defined and we next
describe the method of solution.

In view of the linking of the exterior problem
of parabolic nature and the elliptic interior
problem, by the conditions (96), we adopt an
iterative method of solution. This is based upon
the fact that from the solution in either region
that in the other may be determined. We restrict
our attention to the single case Pr = 1:0 and we
begin by describing separately the methods by
which the solutions in each region are deter-
mined.

Equation (93) together with the boundary
condition (94) admits a solution of the form

T,: = - loge r+ ¢(ra d’)’ (97)

where we require that ¢ be finite atr = 0. Fora
circular cylindrical geometry, & may be con-
veniently written as

i) =0asij— oo,

onr = 1(7 =0) (96)

@0

®= ) r{a,cosnd + b sinnp}.  (98)
n=0

If we now set T(1,¢) = G(¢), then from the
symmetry which this problem displays about
the lines ¢ =0, n/2, G(¢) has the following

properties (i) G(¢) = G(—¢),(i)) G(¢) = G($ +n)
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from which we deduce thatb, = Oanda,,, , =0
for all n in equation (98). Consequently we find

G(@) = a, + i a, cos2np.  (99)

Applying the standard Fourier analysis tech-
niques to G(¢), we have

/2
a, =§f G(t) dt,

0
w2 (1\'

G(t) cos 2nt dt.

A

a2n =
0

Thus, if G(¢) is known, the solution for the
interior region is easily found.

If for the exterior region, the derivative
(08 /07);.- o is known, we may, using (71), solve
equation (68) appropriate to the exterior region
in the manner described in Section 5 using finite
difference techniques.

An obvious iterative procedure now presents
itself. From the solution in the exterior region
we may determine ) on 7 = 0 which in view
of the boundary condition (96) renders the
solution of (93) determinate in the interior, as
above. From the boundary condition (96b)
we then take, as the next approximation to

(08507}

(6?‘?) _ 2k,Rs *(gﬂ)
on Ji-o k, or/,_,

_ 2k, Rs™?
Tk

from (97) and (98), where the coefficients a,,
are given by (100) using the newly calculated
values for G(¢). Using (101) as the next approxi-
mation for the wall temperature gradient, the
above operations are then repeated. The itera-
tive scheme, may be initiated in a fairly arbitrary
manner and is terminated when the absolute
value of the sum of the differences of G(¢) at
the (j + 1)th and jth cycle is less than some
prescribed tolerance.

(1 - §2na2n cos 2n¢), (101)

2 n=1
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An important parameter in this scheme is the
dimensionless quantity 2k,Rs~*/k, which ap-
pears explicitly in (101). Since we are restricting
the analysis to Pr = O(1)which is true for most
gases, we take air, in which k, =6 x 1073
cal/cm? s °C/cm as a typical example. We then
find that we may vary the ratio k /k, from as
large as 2 x 10° for metallic cylinders to
k,/k, = O(1) for non-metallic materials. We
recall however that for the velocity field we have
chosen to use in the exterior problem, the associ-
ated streaming Reynolds number is large. Con-
sequently for this model, for self-consistency
within the framework of our limit processes, we
choose values of 2k, Rs™*/k, which are small
compared to unity.

During the course of the computation for this
particular example it was found that for values
of 2k,Rs™*/k, no larger than 02, the resulting
Fourier series for G{¢) in (99) converged very

FIG. 10. Isotherms within the cylinder for 2k, Rs ™%k, = 05,
Rs » 1. The axis of oscillation is indicated and the broken
lines represent circular arc segments,

slowly and unless more than thirty terms in (99)
are included, which demands a very fine mesh
size in the ¢-direction, the equation (99) is an
inadequate representation of G(¢). For details
of the technique used to improve the conver-
gence of (99), which are based upon methods due
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to Shanks [12], and which enable a larger
range of 2k, Rs™*/k, to be considered, reference
may be made to [10].

As a particular example, we show in Fig. 10
the isotherms within the cylinder for the case
2k,Rs"*/k, = 0-5. This figure shows very well
the distortion of the isotherms near r = 1 from

< /8 /4

F1G. 11. Profiles of temperature and temperature gradient at
the wall as a function of & for 2k Rs™¥/k, = 05, Rs > 1.

the concentric circles which we may expect if
there were no motion in the exterior region. As
we approach the heat source at r = 0 the effects
of the convective velocities in the exterior region
become undetectable, and the isotherms do
indeed revert to their familiar circular shapes.
We also display in Fig. 11 the values of # and
0i9/0 at 71 =0 in the solution for this case
which was achieved after fifteen iterations to
yield accuracy to three significant figures.
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APPENDIX

The integrated form of the momentum equation in (58)
upon which we base our approximate method is

o2
d ou'®
— 295 = — > . Al
df j 1 ( 6'7 m=0 ( )
Q
Profiles for 4 are assumed as follows
U = a{ae™ ™ + be~ 2 4 ce WY (A2)

where it = 3 sin 4£. The unknowns a(£), b(£), c(£) and (&) are
to be determined by requiring that (A.1) is satisfied and that
the following conditions are also satisfied

omu'®
U =0, i =0(m=1,2...)as i - o0,
- OO e
u =u,W=u¥onn=0, (A.3)
u® 0%
i i=0. (A4)

—6773 = “__acaﬁ on i
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The conditions at infinity are trivially satisfied by (A.2); the
compatibility conditions (A.3b) and (A.4) are derived from
the basic momentum equation in (58). From (A.3) we require

b=4l~1-8c)ha=1%14—- 1+ 50), (A.5)
and from (A .4) )
9z . _ dc
a;agtl + didy,? — 2uza—§ =t,, (A.6)
where
t1=l—§(2+i—2c),
t, =2c(Ad + 11) — (A — 1)(4 — 4), (A7)
and
A
zZ = 52 =—.
i

e

Substituting (A.2) into (A.1) we have the further equation,

a dc
ué—t.ﬂ, + gzt + ﬁztsgz = tg, (A8)
where
ty, = 75(57 — 424 + 54%) + gh5(124c — 57ch + 37c%),
A 19¢
t, = g(l -7+ %',

t, = 755124 + Tdc — 194),
to = 55(180 — 2451 + 704 — 54° — 180c — 2484c
+ 384%c — T4ic?).

(A9)

The equations (A.6) and (A.8) have to be integrated numeri-
cally from £ = 0 to determine z and c; a and b then follow
from (A.5). For a boundary layer starting from a stagnation
point we require that z, and c, remain finite so that ¢, = ¢,
= 0 when # = 0. It therefore follows from (A.7) that

A-1)Hi-4
=2 2T

i+ M0

(A.10)

Substituting this value of ¢ into (A,9) we find that the only
physically acceptable root of (1) =0 is 4 = 10 and so
from (A.7) and (A.10), ’

2(0) = &, 0) = 00. (A.11)
We solve equations (A.6) and (A.8) subject to the boundary
conditions (A.11) using a fourth order Runge Kutta process.
The displacement thickness &, /¢ and the shear stress 1, at
the inner edge of the outer boundary layer are found by
substituting the assumed profile (A.2) into equations (65)
and (66) respectively to give
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%, 50 A+ 4
aRs 4~ AT A
- (A.12)
'CO —u
e = —— (2 4+ 4 — 20}
GRS 3 A TAT
dq
The integral form of the energy equation (68) is
4 1 e
= J WORS dff = — w(if—) . (A13)
d¢ J Pridi J.,
Exponential profiles for 7 are assumed as follows
= de T 4 eeT I 4 fem M (A14)

where the unknowns d(&), e(&), f(£) and 6 (&) are to be deter-
mined by requiring that (A.13) be satisfied and that the
following conditions are also satisfied

mi(ﬂ
i =0, _"f’ =0 {m=1,2..)ass - .
1 alt(s) ("}f(b'
=1, — = =g Sonp=0 {A.15)
o proapr e '
1 a.‘af(sl s ai(s\ azf(s\ SES )
e = o ar T Ramar T ¥ G onA=0 (AL6)
Pr i on o0& oEdn on .

The conditions at infinity are trivially satisfied by (A.14);
the compatibility conditions {A.15b) and (A.16) are derived
from the energy equation (68). From (A.15) we require

=44+ 5 e=36 -1, {ALT)

and from {A.16), using {A.7c).

af 1 i@ A\ i)

Yo (1 — ol 4 2T (A7) — =

=4 f’{u(“ I ) a')“La}
2~ U
(‘—Z_F—Lflu” {A.§8)
A% Pr

where 4 = 8,/ substituting the velocity and temperature
profiles given by (A.2) and (A.14) respectively in (A.13) we
have the further equation
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é 42 + a2 {zﬂ" LN SH|  4u(1-p)
ac T T w T @ T meE( T zamApre
(A19)
where
u (d L, })
= a
1+4 2+4 3+4
Y L I )
- (!+2A 2424 3+ 34
+’< 4L f) (A.20)
“N\1%34 2434 3434/ <

and a, b, d and ¢ are given in (A.5) and (A.17). Equations
(A.18) and (A.19) have to be integrated numerically, simul-
taneously with equations (A.6) and (A.8), to determine f:
A% d and e then follow from (A.17). To integrate {(A.18) and
(A.19) starting from the stagnation point £ = O we require
fyand zjé to remain finite at & = 0. It therefore follows from
(A.18Yand (A.19) that

9
= f) = s
h (11 — Pra*
, at s =0, (A.21)
. 21 - ) -
A == e
3PrH

respectively. For Pr = 1-0, we find that on eliminating f in
(A21) and solving the resulting sixth degree equation in 4,
the only physically acceptable root is
A = 1037382, (A.22)
so that
f = 0093093.

Equations (A.6), A(8), (A.18) and (A.19) are solved together
with the boundary conditions (A.11} and (A22) using a
fourth order Runge-Kutta process. Values for the local heat
transfer (38'/07)5_, are then found from the expression

(6&”) A=
o Jon 34zt

TRANSFERT THERMIQUE PAR UN CYLINDRE VERTICAL VIBRANT

Résumé—On a obtenu des résultats théoriques pour le transfert thermique par un cylindre circulaire
oscillant dans un fluide visqueux illimité au repos. L’amplitude de I'oscillation est supposée petite com-
parée au rayon du cylindre, qui, pour la plupart des exemples considérés, est supposé étre 4 la température
constante. L’analyse est basée sur Pytilisation du champ dynamique acoustique et les cas de petits et
grands nombres de Reynolds de écoulement sont considérés. Pour de grands nombres de Reynolds, il
a été calculé une solution pour le champ d'éconlement permanent non déterminé antérieurement. Les
résultats obtenus couvrent un large domaine du nombre de Prandtl. La méthode des développements
asymptotiques est exploitée dans I'analyse et les résultats calculés sont également complétés par une
méthode approchée basée sur une forme intégrée des équations de base. La relation entre le travail présenté
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et d’autres contributions correspondantes déja publiées est discutée. Dans une section finale I'attention
est portée sur une technique de détermination de la distribution de température pour une source linéaire
de chaleur placée au centre du cylindre oscillant.

WARMEUBERTRAGUNG VON EINEM VIBRIERENDEN KREISZYLINDER

Zusammenfassung—Theoretische Ergebnisse wurden fiir die Warmeiibertragung von einem kreisfdrmigen
Zylinder erhalten, der in einer unbegrenzten sonst ruhigen viskosen Fliissigkeit oszillierte. Die Schwin-
gungsamplitude soll klein gegeniiber dem Zylinderradius sein.

Die Zylindertemperatur wurde fiir die betrachteten Beispiele als konstant angenommen.

Die Analysis basiert auf dem akustischen Stromungsfeld. Fille von kleinen und groBilen Reynolds-
Zahlen werden betrachtet. Fiir grofie Reynolds-Zahlen wird eine Losung fiir das bisher unbestimmte
stationire Strémungsfeld berechnet. Die erhaltenen Ergebnisse tiberdecken einen grossen Bereich der
Prandtl-Zahl. Die Methode der asymptotischen Entwicklungen wird in der Analysis ausgenutzt, und auch
die berechneten Ergebnisse werden durch eine Nidherungsmethode erginzt, die auf einer integrierten Form
der Hauptgleichungen basiert. Die Bezichungen zwischen der vorliegenden Arbeit und anderen ent-
sprechenden Beitrégen in der Literatur werden erortert. In einem SchluBabschnitt wird zur Bestimmung
der Temperaturverteilung eine Technik verwendet, die sich ergibt, wenn eine linienférmige Wiarmequelle

im Zentrum eines schwingenden Zylinders liegt.

NEPEHOC TEIVIA OT BUBPUPVIOIETO ROJBHEBOIO MUJINHIAPA

Annoranua-—Ilonydensl TeopeTHuecKHe Pe3yAbTATH N0 HCCIAEJOBAHMIO [TPOLECCA NEPEHOCA
TelIa OT KOJBIEBOr0 LMAMHAPA, KoJgeOmiomerocd B HeOTPAHMYEHHON BABKON MMIKOCTH,
HAXOJMBIIEHCA B COCTOAHHM NOKOA. IIpeAmonaraeTcd, 4To aMIUTMTYHAa KosebaHiis Mamia mo
CPAaBHEHHI0 ¢ PAAMyCOM IMIMEApA, TeMIIepaTypa KOTOpPOro B GOJLIIMHCTBE U3 PACCMATpPH-
BAeMBIX TIPMMEpPOB NPUHMMAETCA IOCTOAHHON. B OCHOBe aHAINBA JIEKUT HCIOJL30BAHUE
BRYCTUYECKON MOFeNM TOJIA TeueHMsA. PaccMarpuBalOTCH CaydYay MAJHX H GONbHINX UYHCE
Petinoneaca nalerawumero noroxa. Jua Goasuinx 3HaveHuil uncsa Peftuoasaca nonydeno
YHCIeHHOE peleHNe padee He WUCCTeOBAHHON 33a7a¥u O CTAUMOHAOHOM MOJe TeYeHHHA,
PesyapraTsi MONYYeHH A HIMDOKOre AMana3oHa 3Havenuil umcsa [Ipanmrns. B ananmse
MCHOJBL30BAH METO[ B3aMMHMIX ACHMITOTHYECKUX pPABIOMEHUN M DPE3YAbTATH UYHCJIEHHOTO
pacyeta CpaBHEHb C pesylbTATAMM NPUOMGKEHHOTO pPeINeHMA WHTETPATDHHIM METONOM.
HJaetcs cpaBHenue pesyabTATOR PAfOTH ¢ NAHHBIMH AHAJIOTMYHEIX pafoT APYrHX 4BTOPOB,
Mocaennan vacts paGoTs MOCBANIEHA METONMKE ONpPeJeNeHUA paclpefeNeHIs TeMIePATyPH
B CHYUae, KOTN HA OCH KoneSuionlerocs NUINHAPA COCPEROTO9eH NUHeAHEM HCTOYHIK TeNna.
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